MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem11 Unicode version

Theorem fin1a2lem11 8052
Description: Lemma for fin1a2 8057. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem11  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  ran  ( b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  ( A  u.  { (/) } ) )
Distinct variable group:    b, c, A

Proof of Theorem fin1a2lem11
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . 3  |-  ( b  e.  om  |->  U. {
c  e.  A  | 
c  ~<_  b } )  =  ( b  e. 
om  |->  U. { c  e.  A  |  c  ~<_  b } )
21rnmpt 4941 . 2  |-  ran  (
b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  { d  |  E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b } }
3 unieq 3852 . . . . . . . . . . . 12  |-  ( { c  e.  A  | 
c  ~<_  b }  =  (/) 
->  U. { c  e.  A  |  c  ~<_  b }  =  U. (/) )
4 uni0 3870 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
53, 4syl6eq 2344 . . . . . . . . . . 11  |-  ( { c  e.  A  | 
c  ~<_  b }  =  (/) 
->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
65adantl 452 . . . . . . . . . 10  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
7 0ex 4166 . . . . . . . . . . 11  |-  (/)  e.  _V
87elsnc2 3682 . . . . . . . . . 10  |-  ( U. { c  e.  A  |  c  ~<_  b }  e.  { (/) }  <->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
96, 8sylibr 203 . . . . . . . . 9  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } )
109olcd 382 . . . . . . . 8  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  -> 
( U. { c  e.  A  |  c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
11 ssrab2 3271 . . . . . . . . . 10  |-  { c  e.  A  |  c  ~<_  b }  C_  A
12 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  { c  e.  A  |  c  ~<_  b }  =/=  (/) )
13 simplll 734 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> [ C.]  Or  A )
14 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  A  C_  Fin )
15 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> 
b  e.  om )
16 fin1a2lem9 8050 . . . . . . . . . . . 12  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin  /\  b  e.  om )  ->  { c  e.  A  |  c  ~<_  b }  e.  Fin )
1713, 14, 15, 16syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  { c  e.  A  |  c  ~<_  b }  e.  Fin )
18 soss 4348 . . . . . . . . . . . 12  |-  ( { c  e.  A  | 
c  ~<_  b }  C_  A  ->  ( [ C.]  Or  A  -> [ C.]  Or  { c  e.  A  |  c  ~<_  b } ) )
1911, 13, 18mpsyl 59 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> [ C.]  Or  { c  e.  A  |  c  ~<_  b } )
20 fin1a2lem10 8051 . . . . . . . . . . 11  |-  ( ( { c  e.  A  |  c  ~<_  b }  =/=  (/)  /\  { c  e.  A  |  c  ~<_  b }  e.  Fin  /\ [
C.]  Or  { c  e.  A  |  c  ~<_  b } )  ->  U. {
c  e.  A  | 
c  ~<_  b }  e.  { c  e.  A  | 
c  ~<_  b } )
2112, 17, 19, 20syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  { c  e.  A  |  c  ~<_  b }
)
2211, 21sseldi 3191 . . . . . . . . 9  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  A )
2322orcd 381 . . . . . . . 8  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> 
( U. { c  e.  A  |  c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
2410, 23pm2.61dane 2537 . . . . . . 7  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  ->  ( U. {
c  e.  A  | 
c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/)
} ) )
25 eleq1 2356 . . . . . . . 8  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  A  <->  U. { c  e.  A  |  c  ~<_  b }  e.  A
) )
26 eleq1 2356 . . . . . . . 8  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  { (/) }  <->  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
2725, 26orbi12d 690 . . . . . . 7  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
( d  e.  A  \/  d  e.  { (/) } )  <->  ( U. {
c  e.  A  | 
c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/)
} ) ) )
2824, 27syl5ibrcom 213 . . . . . 6  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  ->  ( d  = 
U. { c  e.  A  |  c  ~<_  b }  ->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
2928rexlimdva 2680 . . . . 5  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b }  ->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
30 simpr 447 . . . . . . . . . 10  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  A  C_  Fin )
3130sselda 3193 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  Fin )
32 ficardom 7610 . . . . . . . . 9  |-  ( d  e.  Fin  ->  ( card `  d )  e. 
om )
3331, 32syl 15 . . . . . . . 8  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( card `  d )  e.  om )
34 simpr 447 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  A )
35 ficardid 7611 . . . . . . . . . . . . 13  |-  ( d  e.  Fin  ->  ( card `  d )  ~~  d )
3631, 35syl 15 . . . . . . . . . . . 12  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( card `  d )  ~~  d
)
37 ensym 6926 . . . . . . . . . . . 12  |-  ( (
card `  d )  ~~  d  ->  d  ~~  ( card `  d )
)
38 endom 6904 . . . . . . . . . . . 12  |-  ( d 
~~  ( card `  d
)  ->  d  ~<_  ( card `  d ) )
3936, 37, 383syl 18 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  ~<_  ( card `  d ) )
40 breq1 4042 . . . . . . . . . . . 12  |-  ( c  =  d  ->  (
c  ~<_  ( card `  d
)  <->  d  ~<_  ( card `  d ) ) )
4140elrab 2936 . . . . . . . . . . 11  |-  ( d  e.  { c  e.  A  |  c  ~<_  (
card `  d ) } 
<->  ( d  e.  A  /\  d  ~<_  ( card `  d ) ) )
4234, 39, 41sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  { c  e.  A  | 
c  ~<_  ( card `  d
) } )
43 elssuni 3871 . . . . . . . . . 10  |-  ( d  e.  { c  e.  A  |  c  ~<_  (
card `  d ) }  ->  d  C_  U. {
c  e.  A  | 
c  ~<_  ( card `  d
) } )
4442, 43syl 15 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  C_  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
45 breq1 4042 . . . . . . . . . . . . 13  |-  ( c  =  b  ->  (
c  ~<_  ( card `  d
)  <->  b  ~<_  ( card `  d ) ) )
4645elrab 2936 . . . . . . . . . . . 12  |-  ( b  e.  { c  e.  A  |  c  ~<_  (
card `  d ) } 
<->  ( b  e.  A  /\  b  ~<_  ( card `  d ) ) )
47 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  ~<_  ( card `  d )
)
4836adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  ( card `  d )  ~~  d )
49 domentr 6936 . . . . . . . . . . . . . . 15  |-  ( ( b  ~<_  ( card `  d
)  /\  ( card `  d )  ~~  d
)  ->  b  ~<_  d )
5047, 48, 49syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  ~<_  d )
51 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  A  C_ 
Fin )
52 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  e.  A )
5351, 52sseldd 3194 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  e.  Fin )
5431adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  d  e.  Fin )
55 simplll 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  -> [ C.]  Or  A )
56 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  d  e.  A )
57 sorpssi 6299 . . . . . . . . . . . . . . . 16  |-  ( ( [
C.]  Or  A  /\  ( b  e.  A  /\  d  e.  A
) )  ->  (
b  C_  d  \/  d  C_  b ) )
5855, 52, 56, 57syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  (
b  C_  d  \/  d  C_  b ) )
59 fincssdom 7965 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  Fin  /\  d  e.  Fin  /\  (
b  C_  d  \/  d  C_  b ) )  ->  ( b  ~<_  d  <-> 
b  C_  d )
)
6053, 54, 58, 59syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  (
b  ~<_  d  <->  b  C_  d ) )
6150, 60mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  C_  d )
6261ex 423 . . . . . . . . . . . 12  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( (
b  e.  A  /\  b  ~<_  ( card `  d
) )  ->  b  C_  d ) )
6346, 62syl5bi 208 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( b  e.  { c  e.  A  |  c  ~<_  ( card `  d ) }  ->  b 
C_  d ) )
6463ralrimiv 2638 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  A. b  e.  { c  e.  A  |  c  ~<_  ( card `  d ) } b 
C_  d )
65 unissb 3873 . . . . . . . . . 10  |-  ( U. { c  e.  A  |  c  ~<_  ( card `  d ) }  C_  d 
<-> 
A. b  e.  {
c  e.  A  | 
c  ~<_  ( card `  d
) } b  C_  d )
6664, 65sylibr 203 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  U. { c  e.  A  |  c  ~<_  ( card `  d
) }  C_  d
)
6744, 66eqssd 3209 . . . . . . . 8  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
68 breq2 4043 . . . . . . . . . . . 12  |-  ( b  =  ( card `  d
)  ->  ( c  ~<_  b 
<->  c  ~<_  ( card `  d
) ) )
6968rabbidv 2793 . . . . . . . . . . 11  |-  ( b  =  ( card `  d
)  ->  { c  e.  A  |  c  ~<_  b }  =  {
c  e.  A  | 
c  ~<_  ( card `  d
) } )
7069unieqd 3854 . . . . . . . . . 10  |-  ( b  =  ( card `  d
)  ->  U. { c  e.  A  |  c  ~<_  b }  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
7170eqeq2d 2307 . . . . . . . . 9  |-  ( b  =  ( card `  d
)  ->  ( d  =  U. { c  e.  A  |  c  ~<_  b }  <->  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } ) )
7271rspcev 2897 . . . . . . . 8  |-  ( ( ( card `  d
)  e.  om  /\  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d
) } )  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } )
7333, 67, 72syl2anc 642 . . . . . . 7  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
)
7473ex 423 . . . . . 6  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( d  e.  A  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
75 elsn 3668 . . . . . . 7  |-  ( d  e.  { (/) }  <->  d  =  (/) )
76 peano1 4691 . . . . . . . . 9  |-  (/)  e.  om
77 dom0 7005 . . . . . . . . . . . . . . . 16  |-  ( b  ~<_  (/) 
<->  b  =  (/) )
7877biimpi 186 . . . . . . . . . . . . . . 15  |-  ( b  ~<_  (/)  ->  b  =  (/) )
7978adantl 452 . . . . . . . . . . . . . 14  |-  ( ( b  e.  A  /\  b  ~<_  (/) )  ->  b  =  (/) )
8079a1i 10 . . . . . . . . . . . . 13  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( ( b  e.  A  /\  b  ~<_  (/) )  ->  b  =  (/) ) )
81 breq1 4042 . . . . . . . . . . . . . 14  |-  ( c  =  b  ->  (
c  ~<_  (/)  <->  b  ~<_  (/) ) )
8281elrab 2936 . . . . . . . . . . . . 13  |-  ( b  e.  { c  e.  A  |  c  ~<_  (/) }  <-> 
( b  e.  A  /\  b  ~<_  (/) ) )
83 elsn 3668 . . . . . . . . . . . . 13  |-  ( b  e.  { (/) }  <->  b  =  (/) )
8480, 82, 833imtr4g 261 . . . . . . . . . . . 12  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( b  e.  {
c  e.  A  | 
c  ~<_  (/) }  ->  b  e.  { (/) } ) )
8584ssrdv 3198 . . . . . . . . . . 11  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  { c  e.  A  |  c  ~<_  (/) }  C_  {
(/) } )
86 uni0b 3868 . . . . . . . . . . 11  |-  ( U. { c  e.  A  |  c  ~<_  (/) }  =  (/)  <->  { c  e.  A  | 
c  ~<_  (/) }  C_  { (/) } )
8785, 86sylibr 203 . . . . . . . . . 10  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  U. { c  e.  A  |  c  ~<_  (/) }  =  (/) )
8887eqcomd 2301 . . . . . . . . 9  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  (/)  =  U. { c  e.  A  |  c  ~<_  (/) } )
89 breq2 4043 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( c  ~<_  b  <->  c  ~<_  (/) ) )
9089rabbidv 2793 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  { c  e.  A  |  c  ~<_  b }  =  {
c  e.  A  | 
c  ~<_  (/) } )
9190unieqd 3854 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  U. {
c  e.  A  | 
c  ~<_  b }  =  U. { c  e.  A  |  c  ~<_  (/) } )
9291eqeq2d 2307 . . . . . . . . . 10  |-  ( b  =  (/)  ->  ( (/)  =  U. { c  e.  A  |  c  ~<_  b }  <->  (/)  =  U. {
c  e.  A  | 
c  ~<_  (/) } ) )
9392rspcev 2897 . . . . . . . . 9  |-  ( (
(/)  e.  om  /\  (/)  =  U. { c  e.  A  |  c  ~<_  (/) } )  ->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } )
9476, 88, 93sylancr 644 . . . . . . . 8  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } )
95 eqeq1 2302 . . . . . . . . 9  |-  ( d  =  (/)  ->  ( d  =  U. { c  e.  A  |  c  ~<_  b }  <->  (/)  =  U. { c  e.  A  |  c  ~<_  b }
) )
9695rexbidv 2577 . . . . . . . 8  |-  ( d  =  (/)  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } ) )
9794, 96syl5ibrcom 213 . . . . . . 7  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( d  =  (/)  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
9875, 97syl5bi 208 . . . . . 6  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( d  e.  { (/)
}  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
) )
9974, 98jaod 369 . . . . 5  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( ( d  e.  A  \/  d  e. 
{ (/) } )  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
10029, 99impbid 183 . . . 4  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
101 elun 3329 . . . 4  |-  ( d  e.  ( A  u.  {
(/) } )  <->  ( d  e.  A  \/  d  e.  { (/) } ) )
102100, 101syl6bbr 254 . . 3  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  -> 
( E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  d  e.  ( A  u.  {
(/) } ) ) )
103102abbi1dv 2412 . 2  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  { d  |  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } }  =  ( A  u.  { (/) } ) )
1042, 103syl5eq 2340 1  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  ran  ( b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  ( A  u.  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    u. cun 3163    C_ wss 3165   (/)c0 3468   {csn 3653   U.cuni 3843   class class class wbr 4039    e. cmpt 4093    Or wor 4329   omcom 4672   ran crn 4706   ` cfv 5271   [ C.] crpss 6292    ~~ cen 6876    ~<_ cdom 6877   Fincfn 6879   cardccrd 7584
This theorem is referenced by:  fin1a2lem12  8053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-rpss 6293  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588
  Copyright terms: Public domain W3C validator