MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem12 Structured version   Unicode version

Theorem fin1a2lem12 8291
Description: Lemma for fin1a2 8295. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem12  |-  ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  -.  B  e. FinIII )

Proof of Theorem fin1a2lem12
Dummy variables  d 
e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  B  e. FinIII )
2 simpll1 996 . . . . . . 7  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A  C_ 
~P B )
32adantr 452 . . . . . 6  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  A  C_  ~P B
)
4 ssrab2 3428 . . . . . . . 8  |-  { f  e.  A  |  f  ~<_  e }  C_  A
54unissi 4038 . . . . . . 7  |-  U. {
f  e.  A  | 
f  ~<_  e }  C_  U. A
6 sspwuni 4176 . . . . . . . 8  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
76biimpi 187 . . . . . . 7  |-  ( A 
C_  ~P B  ->  U. A  C_  B )
85, 7syl5ss 3359 . . . . . 6  |-  ( A 
C_  ~P B  ->  U. {
f  e.  A  | 
f  ~<_  e }  C_  B )
93, 8syl 16 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  U. { f  e.  A  |  f  ~<_  e }  C_  B )
10 elpw2g 4363 . . . . . 6  |-  ( B  e. FinIII  ->  ( U. {
f  e.  A  | 
f  ~<_  e }  e.  ~P B  <->  U. { f  e.  A  |  f  ~<_  e }  C_  B )
)
1110ad2antlr 708 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  ( U. { f  e.  A  |  f  ~<_  e }  e.  ~P B 
<-> 
U. { f  e.  A  |  f  ~<_  e }  C_  B )
)
129, 11mpbird 224 . . . 4  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  U. { f  e.  A  |  f  ~<_  e }  e.  ~P B
)
13 eqid 2436 . . . 4  |-  ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } )  =  ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } )
1412, 13fmptd 5893 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) : om --> ~P B
)
15 vex 2959 . . . . . . . . . . 11  |-  d  e. 
_V
1615sucex 4791 . . . . . . . . . 10  |-  suc  d  e.  _V
17 sssucid 4658 . . . . . . . . . 10  |-  d  C_  suc  d
18 ssdomg 7153 . . . . . . . . . 10  |-  ( suc  d  e.  _V  ->  ( d  C_  suc  d  -> 
d  ~<_  suc  d )
)
1916, 17, 18mp2 9 . . . . . . . . 9  |-  d  ~<_  suc  d
20 domtr 7160 . . . . . . . . 9  |-  ( ( f  ~<_  d  /\  d  ~<_  suc  d )  ->  f  ~<_  suc  d )
2119, 20mpan2 653 . . . . . . . 8  |-  ( f  ~<_  d  ->  f  ~<_  suc  d
)
2221a1i 11 . . . . . . 7  |-  ( f  e.  A  ->  (
f  ~<_  d  ->  f  ~<_  suc  d ) )
2322ss2rabi 3425 . . . . . 6  |-  { f  e.  A  |  f  ~<_  d }  C_  { f  e.  A  |  f  ~<_  suc  d }
24 uniss 4036 . . . . . 6  |-  ( { f  e.  A  | 
f  ~<_  d }  C_  { f  e.  A  | 
f  ~<_  suc  d }  ->  U. { f  e.  A  |  f  ~<_  d }  C_  U. { f  e.  A  |  f  ~<_  suc  d } )
2523, 24mp1i 12 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  U. { f  e.  A  |  f  ~<_  d }  C_  U. { f  e.  A  |  f  ~<_  suc  d } )
26 id 20 . . . . . 6  |-  ( d  e.  om  ->  d  e.  om )
27 pwexg 4383 . . . . . . . . 9  |-  ( B  e. FinIII  ->  ~P B  e. 
_V )
2827adantl 453 . . . . . . . 8  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  ~P B  e.  _V )
2928, 2ssexd 4350 . . . . . . 7  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A  e.  _V )
30 rabexg 4353 . . . . . . 7  |-  ( A  e.  _V  ->  { f  e.  A  |  f  ~<_  d }  e.  _V )
31 uniexg 4706 . . . . . . 7  |-  ( { f  e.  A  | 
f  ~<_  d }  e.  _V  ->  U. { f  e.  A  |  f  ~<_  d }  e.  _V )
3229, 30, 313syl 19 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  U. {
f  e.  A  | 
f  ~<_  d }  e.  _V )
33 breq2 4216 . . . . . . . . 9  |-  ( e  =  d  ->  (
f  ~<_  e  <->  f  ~<_  d ) )
3433rabbidv 2948 . . . . . . . 8  |-  ( e  =  d  ->  { f  e.  A  |  f  ~<_  e }  =  {
f  e.  A  | 
f  ~<_  d } )
3534unieqd 4026 . . . . . . 7  |-  ( e  =  d  ->  U. {
f  e.  A  | 
f  ~<_  e }  =  U. { f  e.  A  |  f  ~<_  d }
)
3635, 13fvmptg 5804 . . . . . 6  |-  ( ( d  e.  om  /\  U. { f  e.  A  |  f  ~<_  d }  e.  _V )  ->  (
( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) `  d )  =  U. { f  e.  A  |  f  ~<_  d } )
3726, 32, 36syl2anr 465 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  d
)  =  U. {
f  e.  A  | 
f  ~<_  d } )
38 peano2 4865 . . . . . 6  |-  ( d  e.  om  ->  suc  d  e.  om )
39 rabexg 4353 . . . . . . 7  |-  ( A  e.  _V  ->  { f  e.  A  |  f  ~<_  suc  d }  e.  _V )
40 uniexg 4706 . . . . . . 7  |-  ( { f  e.  A  | 
f  ~<_  suc  d }  e.  _V  ->  U. { f  e.  A  |  f  ~<_  suc  d }  e.  _V )
4129, 39, 403syl 19 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  U. {
f  e.  A  | 
f  ~<_  suc  d }  e.  _V )
42 breq2 4216 . . . . . . . . 9  |-  ( e  =  suc  d  -> 
( f  ~<_  e  <->  f  ~<_  suc  d
) )
4342rabbidv 2948 . . . . . . . 8  |-  ( e  =  suc  d  ->  { f  e.  A  |  f  ~<_  e }  =  { f  e.  A  |  f  ~<_  suc  d } )
4443unieqd 4026 . . . . . . 7  |-  ( e  =  suc  d  ->  U. { f  e.  A  |  f  ~<_  e }  =  U. { f  e.  A  |  f  ~<_  suc  d } )
4544, 13fvmptg 5804 . . . . . 6  |-  ( ( suc  d  e.  om  /\ 
U. { f  e.  A  |  f  ~<_  suc  d }  e.  _V )  ->  ( ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } ) `
 suc  d )  =  U. { f  e.  A  |  f  ~<_  suc  d } )
4638, 41, 45syl2anr 465 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  suc  d )  =  U. { f  e.  A  |  f  ~<_  suc  d } )
4725, 37, 463sstr4d 3391 . . . 4  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  d
)  C_  ( (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) `  suc  d ) )
4847ralrimiva 2789 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A. d  e.  om  ( ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } ) `
 d )  C_  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  suc  d ) )
49 fin34i 8261 . . 3  |-  ( ( B  e. FinIII  /\  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e } ) : om --> ~P B  /\  A. d  e.  om  ( ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } ) `
 d )  C_  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  suc  d ) )  ->  U. ran  ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } )  e.  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) )
501, 14, 48, 49syl3anc 1184 . 2  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  U. ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) )
51 fin1a2lem11 8290 . . . . . 6  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
5251adantrr 698 . . . . 5  |-  ( ( [
C.]  Or  A  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
53523ad2antl2 1120 . . . 4  |-  ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
5453adantr 452 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
55 simpll3 998 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U. A  e.  A )
56 simplrr 738 . . . . . . 7  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A  =/=  (/) )
57 sspwuni 4176 . . . . . . . . . . 11  |-  ( A 
C_  ~P (/)  <->  U. A  C_  (/) )
58 ss0b 3657 . . . . . . . . . . 11  |-  ( U. A  C_  (/)  <->  U. A  =  (/) )
5957, 58bitri 241 . . . . . . . . . 10  |-  ( A 
C_  ~P (/)  <->  U. A  =  (/) )
60 pw0 3945 . . . . . . . . . . . . 13  |-  ~P (/)  =  { (/)
}
6160sseq2i 3373 . . . . . . . . . . . 12  |-  ( A 
C_  ~P (/)  <->  A  C_  { (/) } )
62 sssn 3957 . . . . . . . . . . . 12  |-  ( A 
C_  { (/) }  <->  ( A  =  (/)  \/  A  =  { (/) } ) )
6361, 62bitri 241 . . . . . . . . . . 11  |-  ( A 
C_  ~P (/)  <->  ( A  =  (/)  \/  A  =  { (/)
} ) )
64 df-ne 2601 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
65 0ex 4339 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  _V
6665unisn 4031 . . . . . . . . . . . . . . . 16  |-  U. { (/)
}  =  (/)
6765snid 3841 . . . . . . . . . . . . . . . 16  |-  (/)  e.  { (/)
}
6866, 67eqeltri 2506 . . . . . . . . . . . . . . 15  |-  U. { (/)
}  e.  { (/) }
69 unieq 4024 . . . . . . . . . . . . . . . 16  |-  ( A  =  { (/) }  ->  U. A  =  U. { (/)
} )
70 id 20 . . . . . . . . . . . . . . . 16  |-  ( A  =  { (/) }  ->  A  =  { (/) } )
7169, 70eleq12d 2504 . . . . . . . . . . . . . . 15  |-  ( A  =  { (/) }  ->  ( U. A  e.  A  <->  U. { (/) }  e.  { (/)
} ) )
7268, 71mpbiri 225 . . . . . . . . . . . . . 14  |-  ( A  =  { (/) }  ->  U. A  e.  A )
7372orim2i 505 . . . . . . . . . . . . 13  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( A  =  (/)  \/ 
U. A  e.  A
) )
7473ord 367 . . . . . . . . . . . 12  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( -.  A  =  (/)  ->  U. A  e.  A
) )
7564, 74syl5bi 209 . . . . . . . . . . 11  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( A  =/=  (/)  ->  U. A  e.  A ) )
7663, 75sylbi 188 . . . . . . . . . 10  |-  ( A 
C_  ~P (/)  ->  ( A  =/=  (/)  ->  U. A  e.  A ) )
7759, 76sylbir 205 . . . . . . . . 9  |-  ( U. A  =  (/)  ->  ( A  =/=  (/)  ->  U. A  e.  A ) )
7877com12 29 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( U. A  =  (/)  ->  U. A  e.  A ) )
7978con3d 127 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( -.  U. A  e.  A  ->  -.  U. A  =  (/) ) )
8056, 55, 79sylc 58 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U. A  =  (/) )
81 ioran 477 . . . . . 6  |-  ( -.  ( U. A  e.  A  \/  U. A  =  (/) )  <->  ( -.  U. A  e.  A  /\  -.  U. A  =  (/) ) )
8255, 80, 81sylanbrc 646 . . . . 5  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  ( U. A  e.  A  \/  U. A  =  (/) ) )
83 uniun 4034 . . . . . . . 8  |-  U. ( A  u.  { (/) } )  =  ( U. A  u.  U. { (/) } )
8466uneq2i 3498 . . . . . . . 8  |-  ( U. A  u.  U. { (/) } )  =  ( U. A  u.  (/) )
85 un0 3652 . . . . . . . 8  |-  ( U. A  u.  (/) )  = 
U. A
8683, 84, 853eqtri 2460 . . . . . . 7  |-  U. ( A  u.  { (/) } )  =  U. A
8786eleq1i 2499 . . . . . 6  |-  ( U. ( A  u.  { (/) } )  e.  ( A  u.  { (/) } )  <->  U. A  e.  ( A  u.  { (/) } ) )
88 elun 3488 . . . . . 6  |-  ( U. A  e.  ( A  u.  { (/) } )  <->  ( U. A  e.  A  \/  U. A  e.  { (/) } ) )
8965elsnc2 3843 . . . . . . 7  |-  ( U. A  e.  { (/) }  <->  U. A  =  (/) )
9089orbi2i 506 . . . . . 6  |-  ( ( U. A  e.  A  \/  U. A  e.  { (/)
} )  <->  ( U. A  e.  A  \/  U. A  =  (/) ) )
9187, 88, 903bitri 263 . . . . 5  |-  ( U. ( A  u.  { (/) } )  e.  ( A  u.  { (/) } )  <-> 
( U. A  e.  A  \/  U. A  =  (/) ) )
9282, 91sylnibr 297 . . . 4  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U. ( A  u.  { (/)
} )  e.  ( A  u.  { (/) } ) )
93 unieq 4024 . . . . . 6  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  U. ran  ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } )  =  U. ( A  u.  { (/) } ) )
94 id 20 . . . . . 6  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e } )  =  ( A  u.  { (/) } ) )
9593, 94eleq12d 2504 . . . . 5  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  ( U. ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  <->  U. ( A  u.  {
(/) } )  e.  ( A  u.  { (/) } ) ) )
9695notbid 286 . . . 4  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  ( -.  U. ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  <->  -.  U. ( A  u.  { (/) } )  e.  ( A  u.  {
(/) } ) ) )
9792, 96syl5ibrcom 214 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  -.  U. ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) ) )
9854, 97mpd 15 . 2  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U.
ran  ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } )  e.  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) )
9950, 98pm2.65da 560 1  |-  ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  -.  B  e. FinIII )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709   _Vcvv 2956    u. cun 3318    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {csn 3814   U.cuni 4015   class class class wbr 4212    e. cmpt 4266    Or wor 4502   suc csuc 4583   omcom 4845   ran crn 4879   -->wf 5450   ` cfv 5454   [ C.] crpss 6521    ~<_ cdom 7107   Fincfn 7109  FinIIIcfin3 8161
This theorem is referenced by:  fin1a2s  8294
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-rpss 6522  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-wdom 7527  df-card 7826  df-fin4 8167  df-fin3 8168
  Copyright terms: Public domain W3C validator