MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem4 Unicode version

Theorem fin1a2lem4 8029
Description: Lemma for fin1a2 8041. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
Assertion
Ref Expression
fin1a2lem4  |-  E : om
-1-1-> om

Proof of Theorem fin1a2lem4
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.b . . 3  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
2 2onn 6638 . . . 4  |-  2o  e.  om
3 nnmcl 6610 . . . 4  |-  ( ( 2o  e.  om  /\  x  e.  om )  ->  ( 2o  .o  x
)  e.  om )
42, 3mpan 651 . . 3  |-  ( x  e.  om  ->  ( 2o  .o  x )  e. 
om )
51, 4fmpti 5683 . 2  |-  E : om
--> om
61fin1a2lem3 8028 . . . . . 6  |-  ( a  e.  om  ->  ( E `  a )  =  ( 2o  .o  a ) )
71fin1a2lem3 8028 . . . . . 6  |-  ( b  e.  om  ->  ( E `  b )  =  ( 2o  .o  b ) )
86, 7eqeqan12d 2298 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( E `  a )  =  ( E `  b )  <-> 
( 2o  .o  a
)  =  ( 2o 
.o  b ) ) )
9 2on 6487 . . . . . . 7  |-  2o  e.  On
109a1i 10 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  ->  2o  e.  On )
11 nnon 4662 . . . . . . 7  |-  ( a  e.  om  ->  a  e.  On )
1211adantr 451 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  ->  a  e.  On )
13 nnon 4662 . . . . . . 7  |-  ( b  e.  om  ->  b  e.  On )
1413adantl 452 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  ->  b  e.  On )
15 0lt1o 6503 . . . . . . . . 9  |-  (/)  e.  1o
16 elelsuc 4464 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
1715, 16ax-mp 8 . . . . . . . 8  |-  (/)  e.  suc  1o
18 df-2o 6480 . . . . . . . 8  |-  2o  =  suc  1o
1917, 18eleqtrri 2356 . . . . . . 7  |-  (/)  e.  2o
2019a1i 10 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  -> 
(/)  e.  2o )
21 omcan 6567 . . . . . 6  |-  ( ( ( 2o  e.  On  /\  a  e.  On  /\  b  e.  On )  /\  (/)  e.  2o )  ->  ( ( 2o 
.o  a )  =  ( 2o  .o  b
)  <->  a  =  b ) )
2210, 12, 14, 20, 21syl31anc 1185 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( 2o  .o  a )  =  ( 2o  .o  b )  <-> 
a  =  b ) )
238, 22bitrd 244 . . . 4  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( E `  a )  =  ( E `  b )  <-> 
a  =  b ) )
2423biimpd 198 . . 3  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( E `  a )  =  ( E `  b )  ->  a  =  b ) )
2524rgen2a 2609 . 2  |-  A. a  e.  om  A. b  e. 
om  ( ( E `
 a )  =  ( E `  b
)  ->  a  =  b )
26 dff13 5783 . 2  |-  ( E : om -1-1-> om  <->  ( E : om --> om  /\  A. a  e.  om  A. b  e. 
om  ( ( E `
 a )  =  ( E `  b
)  ->  a  =  b ) ) )
275, 25, 26mpbir2an 886 1  |-  E : om
-1-1-> om
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   (/)c0 3455    e. cmpt 4077   Oncon0 4392   suc csuc 4394   omcom 4656   -->wf 5251   -1-1->wf1 5252   ` cfv 5255  (class class class)co 5858   1oc1o 6472   2oc2o 6473    .o comu 6477
This theorem is referenced by:  fin1a2lem5  8030  fin1a2lem6  8031  fin1a2lem7  8032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484
  Copyright terms: Public domain W3C validator