MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Unicode version

Theorem fin1a2s 8258
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A  e. FinII )
Distinct variable groups:    x, A    x, V

Proof of Theorem fin1a2s
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 elpwi 3775 . . . 4  |-  ( c  e.  ~P ~P A  ->  c  C_  ~P A
)
2 fin12 8257 . . . . . . . . . . 11  |-  ( x  e.  Fin  ->  x  e. FinII
)
3 fin23 8233 . . . . . . . . . . 11  |-  ( x  e. FinII  ->  x  e. FinIII )
42, 3syl 16 . . . . . . . . . 10  |-  ( x  e.  Fin  ->  x  e. FinIII )
5 fin23 8233 . . . . . . . . . 10  |-  ( ( A  \  x )  e. FinII  ->  ( A  \  x )  e. FinIII )
64, 5orim12i 503 . . . . . . . . 9  |-  ( ( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  (
x  e. FinIII  \/  ( A  \  x )  e. FinIII ) )
76ralimi 2749 . . . . . . . 8  |-  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  ~P  A ( x  e. FinIII  \/  ( A  \  x )  e. FinIII ) )
8 fin1a2lem8 8251 . . . . . . . 8  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e. FinIII  \/  ( A  \  x )  e. FinIII ) )  ->  A  e. FinIII )
97, 8sylan2 461 . . . . . . 7  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A  e. FinIII )
109adantr 452 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII ) )  /\  ( c  C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  ->  A  e. FinIII )
11 simplrl 737 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  c  C_ 
~P A )
12 simprrr 742 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  -> [ C.]  Or  c )
1312adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  -> [ C.]  Or  c )
14 simprl 733 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  -.  U. c  e.  c )
15 simplrl 737 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  c  C_  ~P A )
16 ssralv 3375 . . . . . . . . . . . . . 14  |-  ( c 
C_  ~P A  ->  ( A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII )  ->  A. x  e.  c 
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) ) )
1715, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  c  ( x  e.  Fin  \/  ( A 
\  x )  e. FinII ) ) )
18 idd 22 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  (
x  e.  Fin  ->  x  e.  Fin ) )
19 fin1a2lem13 8256 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( c  C_  ~P A  /\ [ C.]  Or  c  /\  -.  U. c  e.  c )  /\  ( -.  x  e.  Fin  /\  x  e.  c ) )  ->  -.  ( A  \  x )  e. FinII )
2019ex 424 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( c  C_  ~P A  /\ [ C.]  Or  c  /\  -.  U. c  e.  c )  ->  ( ( -.  x  e.  Fin  /\  x  e.  c )  ->  -.  ( A  \  x )  e. FinII ) )
21203expa 1153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( c  C_  ~P A  /\ [ C.]  Or  c
)  /\  -.  U. c  e.  c )  ->  (
( -.  x  e. 
Fin  /\  x  e.  c )  ->  -.  ( A  \  x
)  e. FinII ) )
2221adantlrl 701 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) )  /\  -.  U. c  e.  c )  ->  ( ( -.  x  e.  Fin  /\  x  e.  c )  ->  -.  ( A  \  x )  e. FinII ) )
2322adantll 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( ( -.  x  e.  Fin  /\  x  e.  c )  ->  -.  ( A  \  x )  e. FinII ) )
2423imp 419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  ( -.  x  e.  Fin  /\  x  e.  c ) )  ->  -.  ( A  \  x )  e. FinII )
2524ancom2s 778 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  (
x  e.  c  /\  -.  x  e.  Fin ) )  ->  -.  ( A  \  x
)  e. FinII )
2625expr 599 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  ( -.  x  e.  Fin  ->  -.  ( A  \  x )  e. FinII ) )
2726con4d 99 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  (
( A  \  x
)  e. FinII  ->  x  e.  Fin ) )
2818, 27jaod 370 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  (
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  x  e.  Fin ) )
2928ralimdva 2752 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  c  (
x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  c  x  e.  Fin ) )
3017, 29syld 42 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  c  x  e.  Fin ) )
3130impr 603 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  A. x  e.  c  x  e.  Fin )
32 dfss3 3306 . . . . . . . . . . 11  |-  ( c 
C_  Fin  <->  A. x  e.  c  x  e.  Fin )
3331, 32sylibr 204 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  c  C_ 
Fin )
34 simprrl 741 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  -> 
c  =/=  (/) )
3534adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  c  =/=  (/) )
36 fin1a2lem12 8255 . . . . . . . . . 10  |-  ( ( ( c  C_  ~P A  /\ [ C.]  Or  c  /\  -.  U. c  e.  c )  /\  (
c  C_  Fin  /\  c  =/=  (/) ) )  ->  -.  A  e. FinIII )
3711, 13, 14, 33, 35, 36syl32anc 1192 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  -.  A  e. FinIII )
3837expr 599 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  -.  A  e. FinIII ) )
3938impancom 428 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( -.  U. c  e.  c  ->  -.  A  e. FinIII ) )
4039an32s 780 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII ) )  /\  ( c  C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  ->  ( -.  U. c  e.  c  ->  -.  A  e. FinIII ) )
4110, 40mt4d 132 . . . . 5  |-  ( ( ( A  e.  V  /\  A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII ) )  /\  ( c  C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  ->  U. c  e.  c )
4241exp32 589 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( c  C_  ~P A  ->  ( ( c  =/=  (/)  /\ [ C.]  Or  c
)  ->  U. c  e.  c ) ) )
431, 42syl5 30 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( c  e.  ~P ~P A  ->  ( ( c  =/=  (/)  /\ [ C.]  Or  c )  ->  U. c  e.  c ) ) )
4443ralrimiv 2756 . 2  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A. c  e.  ~P  ~P A ( ( c  =/=  (/)  /\ [ C.]  Or  c
)  ->  U. c  e.  c ) )
45 isfin2 8138 . . 3  |-  ( A  e.  V  ->  ( A  e. FinII 
<-> 
A. c  e.  ~P  ~P A ( ( c  =/=  (/)  /\ [ C.]  Or  c
)  ->  U. c  e.  c ) ) )
4645adantr 452 . 2  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( A  e. FinII  <->  A. c  e.  ~P  ~P A ( ( c  =/=  (/)  /\ [ C.]  Or  c )  ->  U. c  e.  c ) ) )
4744, 46mpbird 224 1  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A  e. FinII )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    e. wcel 1721    =/= wne 2575   A.wral 2674    \ cdif 3285    C_ wss 3288   (/)c0 3596   ~Pcpw 3767   U.cuni 3983    Or wor 4470   [ C.] crpss 6488   Fincfn 7076  FinIIcfin2 8123  FinIIIcfin3 8125
This theorem is referenced by:  fin1a2  8259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-rpss 6489  df-riota 6516  df-recs 6600  df-rdg 6635  df-seqom 6672  df-1o 6691  df-2o 6692  df-oadd 6695  df-omul 6696  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-wdom 7491  df-card 7790  df-fin2 8130  df-fin4 8131  df-fin3 8132
  Copyright terms: Public domain W3C validator