MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1aufil Structured version   Unicode version

Theorem fin1aufil 17964
Description: There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set)  X, the set of infinite subsets of 
X is a free ultrafilter on  X. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
fin1aufil.1  |-  F  =  ( ~P X  \  Fin )
Assertion
Ref Expression
fin1aufil  |-  ( X  e.  (FinIa  \  Fin )  -> 
( F  e.  (
UFil `  X )  /\  |^| F  =  (/) ) )

Proof of Theorem fin1aufil
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1aufil.1 . . . . . . 7  |-  F  =  ( ~P X  \  Fin )
21eleq2i 2500 . . . . . 6  |-  ( x  e.  F  <->  x  e.  ( ~P X  \  Fin ) )
3 eldif 3330 . . . . . 6  |-  ( x  e.  ( ~P X  \  Fin )  <->  ( x  e.  ~P X  /\  -.  x  e.  Fin )
)
4 vex 2959 . . . . . . . 8  |-  x  e. 
_V
54elpw 3805 . . . . . . 7  |-  ( x  e.  ~P X  <->  x  C_  X
)
65anbi1i 677 . . . . . 6  |-  ( ( x  e.  ~P X  /\  -.  x  e.  Fin ) 
<->  ( x  C_  X  /\  -.  x  e.  Fin ) )
72, 3, 63bitri 263 . . . . 5  |-  ( x  e.  F  <->  ( x  C_  X  /\  -.  x  e.  Fin ) )
87a1i 11 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  -> 
( x  e.  F  <->  ( x  C_  X  /\  -.  x  e.  Fin ) ) )
9 elex 2964 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  ->  X  e.  _V )
10 eldifn 3470 . . . . 5  |-  ( X  e.  (FinIa  \  Fin )  ->  -.  X  e.  Fin )
11 eleq1 2496 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  Fin  <->  X  e.  Fin ) )
1211notbid 286 . . . . . 6  |-  ( x  =  X  ->  ( -.  x  e.  Fin  <->  -.  X  e.  Fin )
)
1312sbcieg 3193 . . . . 5  |-  ( X  e.  (FinIa  \  Fin )  -> 
( [. X  /  x ].  -.  x  e.  Fin  <->  -.  X  e.  Fin )
)
1410, 13mpbird 224 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  ->  [. X  /  x ].  -.  x  e.  Fin )
15 0fin 7336 . . . . . 6  |-  (/)  e.  Fin
16 0ex 4339 . . . . . . . 8  |-  (/)  e.  _V
17 eleq1 2496 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x  e.  Fin  <->  (/)  e.  Fin ) )
1817notbid 286 . . . . . . . 8  |-  ( x  =  (/)  ->  ( -.  x  e.  Fin  <->  -.  (/)  e.  Fin ) )
1916, 18sbcie 3195 . . . . . . 7  |-  ( [. (/)  /  x ].  -.  x  e.  Fin  <->  -.  (/)  e.  Fin )
2019con2bii 323 . . . . . 6  |-  ( (/)  e.  Fin  <->  -.  [. (/)  /  x ].  -.  x  e.  Fin )
2115, 20mpbi 200 . . . . 5  |-  -.  [. (/)  /  x ].  -.  x  e.  Fin
2221a1i 11 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  ->  -.  [. (/)  /  x ].  -.  x  e.  Fin )
23 ssfi 7329 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  z  C_  y )  -> 
z  e.  Fin )
2423expcom 425 . . . . . . 7  |-  ( z 
C_  y  ->  (
y  e.  Fin  ->  z  e.  Fin ) )
25243ad2ant3 980 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  y )  ->  ( y  e. 
Fin  ->  z  e.  Fin ) )
2625con3d 127 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  y )  ->  ( -.  z  e.  Fin  ->  -.  y  e.  Fin ) )
27 vex 2959 . . . . . 6  |-  z  e. 
_V
28 eleq1 2496 . . . . . . 7  |-  ( x  =  z  ->  (
x  e.  Fin  <->  z  e.  Fin ) )
2928notbid 286 . . . . . 6  |-  ( x  =  z  ->  ( -.  x  e.  Fin  <->  -.  z  e.  Fin )
)
3027, 29sbcie 3195 . . . . 5  |-  ( [. z  /  x ].  -.  x  e.  Fin  <->  -.  z  e.  Fin )
31 vex 2959 . . . . . 6  |-  y  e. 
_V
32 eleq1 2496 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  Fin  <->  y  e.  Fin ) )
3332notbid 286 . . . . . 6  |-  ( x  =  y  ->  ( -.  x  e.  Fin  <->  -.  y  e.  Fin )
)
3431, 33sbcie 3195 . . . . 5  |-  ( [. y  /  x ].  -.  x  e.  Fin  <->  -.  y  e.  Fin )
3526, 30, 343imtr4g 262 . . . 4  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  y )  ->  ( [. z  /  x ].  -.  x  e.  Fin  ->  [. y  /  x ].  -.  x  e. 
Fin ) )
36 eldifi 3469 . . . . . . . . 9  |-  ( X  e.  (FinIa  \  Fin )  ->  X  e. FinIa )
37 fin1ai 8173 . . . . . . . . 9  |-  ( ( X  e. FinIa  /\  y  C_  X )  ->  (
y  e.  Fin  \/  ( X  \  y
)  e.  Fin )
)
3836, 37sylan 458 . . . . . . . 8  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X
)  ->  ( y  e.  Fin  \/  ( X 
\  y )  e. 
Fin ) )
39383adant3 977 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( y  e. 
Fin  \/  ( X  \  y )  e.  Fin ) )
40 inundif 3706 . . . . . . . . . . 11  |-  ( ( z  i^i  y )  u.  ( z  \ 
y ) )  =  z
41 incom 3533 . . . . . . . . . . . . 13  |-  ( z  i^i  y )  =  ( y  i^i  z
)
42 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( y  i^i  z )  e.  Fin )
4341, 42syl5eqel 2520 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( z  i^i  y )  e.  Fin )
44 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( X  \  y )  e.  Fin )
45 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  z  C_  X )
4645ssdifd 3483 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( z  \  y )  C_  ( X  \  y
) )
47 ssfi 7329 . . . . . . . . . . . . 13  |-  ( ( ( X  \  y
)  e.  Fin  /\  ( z  \  y
)  C_  ( X  \  y ) )  -> 
( z  \  y
)  e.  Fin )
4844, 46, 47syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( z  \  y )  e. 
Fin )
49 unfi 7374 . . . . . . . . . . . 12  |-  ( ( ( z  i^i  y
)  e.  Fin  /\  ( z  \  y
)  e.  Fin )  ->  ( ( z  i^i  y )  u.  (
z  \  y )
)  e.  Fin )
5043, 48, 49syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  ( (
z  i^i  y )  u.  ( z  \  y
) )  e.  Fin )
5140, 50syl5eqelr 2521 . . . . . . . . . 10  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
( y  i^i  z
)  e.  Fin  /\  ( X  \  y
)  e.  Fin )
)  ->  z  e.  Fin )
5251expr 599 . . . . . . . . 9  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
y  i^i  z )  e.  Fin )  ->  (
( X  \  y
)  e.  Fin  ->  z  e.  Fin ) )
5352orim2d 814 . . . . . . . 8  |-  ( ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  /\  (
y  i^i  z )  e.  Fin )  ->  (
( y  e.  Fin  \/  ( X  \  y
)  e.  Fin )  ->  ( y  e.  Fin  \/  z  e.  Fin )
) )
5453ex 424 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( ( y  i^i  z )  e. 
Fin  ->  ( ( y  e.  Fin  \/  ( X  \  y )  e. 
Fin )  ->  (
y  e.  Fin  \/  z  e.  Fin )
) ) )
5539, 54mpid 39 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( ( y  i^i  z )  e. 
Fin  ->  ( y  e. 
Fin  \/  z  e.  Fin ) ) )
5655con3d 127 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( -.  (
y  e.  Fin  \/  z  e.  Fin )  ->  -.  ( y  i^i  z )  e.  Fin ) )
5734, 30anbi12i 679 . . . . . 6  |-  ( (
[. y  /  x ].  -.  x  e.  Fin  /\ 
[. z  /  x ].  -.  x  e.  Fin ) 
<->  ( -.  y  e. 
Fin  /\  -.  z  e.  Fin ) )
58 ioran 477 . . . . . 6  |-  ( -.  ( y  e.  Fin  \/  z  e.  Fin )  <->  ( -.  y  e.  Fin  /\ 
-.  z  e.  Fin ) )
5957, 58bitr4i 244 . . . . 5  |-  ( (
[. y  /  x ].  -.  x  e.  Fin  /\ 
[. z  /  x ].  -.  x  e.  Fin ) 
<->  -.  ( y  e. 
Fin  \/  z  e.  Fin ) )
6031inex1 4344 . . . . . 6  |-  ( y  i^i  z )  e. 
_V
61 eleq1 2496 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
x  e.  Fin  <->  ( y  i^i  z )  e.  Fin ) )
6261notbid 286 . . . . . 6  |-  ( x  =  ( y  i^i  z )  ->  ( -.  x  e.  Fin  <->  -.  ( y  i^i  z
)  e.  Fin )
)
6360, 62sbcie 3195 . . . . 5  |-  ( [. ( y  i^i  z
)  /  x ].  -.  x  e.  Fin  <->  -.  ( y  i^i  z
)  e.  Fin )
6456, 59, 633imtr4g 262 . . . 4  |-  ( ( X  e.  (FinIa  \  Fin )  /\  y  C_  X  /\  z  C_  X )  ->  ( ( [. y  /  x ].  -.  x  e.  Fin  /\  [. z  /  x ].  -.  x  e.  Fin )  ->  [. (
y  i^i  z )  /  x ].  -.  x  e.  Fin ) )
658, 9, 14, 22, 35, 64isfild 17890 . . 3  |-  ( X  e.  (FinIa  \  Fin )  ->  F  e.  ( Fil `  X ) )
6610adantr 452 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  -.  X  e.  Fin )
67 unfi 7374 . . . . . . . 8  |-  ( ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )  ->  ( x  u.  ( X  \  x ) )  e.  Fin )
68 ssun2 3511 . . . . . . . . 9  |-  X  C_  ( x  u.  X
)
69 undif2 3704 . . . . . . . . 9  |-  ( x  u.  ( X  \  x ) )  =  ( x  u.  X
)
7068, 69sseqtr4i 3381 . . . . . . . 8  |-  X  C_  ( x  u.  ( X  \  x ) )
71 ssfi 7329 . . . . . . . 8  |-  ( ( ( x  u.  ( X  \  x ) )  e.  Fin  /\  X  C_  ( x  u.  ( X  \  x ) ) )  ->  X  e.  Fin )
7267, 70, 71sylancl 644 . . . . . . 7  |-  ( ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )  ->  X  e.  Fin )
7366, 72nsyl 115 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  -.  ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )
)
74 ianor 475 . . . . . 6  |-  ( -.  ( x  e.  Fin  /\  ( X  \  x
)  e.  Fin )  <->  ( -.  x  e.  Fin  \/ 
-.  ( X  \  x )  e.  Fin ) )
7573, 74sylib 189 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  ( -.  x  e.  Fin  \/ 
-.  ( X  \  x )  e.  Fin ) )
76 elpwi 3807 . . . . . . . 8  |-  ( x  e.  ~P X  ->  x  C_  X )
7776adantl 453 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  x  C_  X )
787baib 872 . . . . . . 7  |-  ( x 
C_  X  ->  (
x  e.  F  <->  -.  x  e.  Fin ) )
7977, 78syl 16 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
x  e.  F  <->  -.  x  e.  Fin ) )
801eleq2i 2500 . . . . . . 7  |-  ( ( X  \  x )  e.  F  <->  ( X  \  x )  e.  ( ~P X  \  Fin ) )
81 difss 3474 . . . . . . . . 9  |-  ( X 
\  x )  C_  X
82 elpw2g 4363 . . . . . . . . . 10  |-  ( X  e.  (FinIa  \  Fin )  -> 
( ( X  \  x )  e.  ~P X 
<->  ( X  \  x
)  C_  X )
)
8382adantr 452 . . . . . . . . 9  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
8481, 83mpbiri 225 . . . . . . . 8  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  ( X  \  x )  e. 
~P X )
85 eldif 3330 . . . . . . . . 9  |-  ( ( X  \  x )  e.  ( ~P X  \  Fin )  <->  ( ( X  \  x )  e. 
~P X  /\  -.  ( X  \  x
)  e.  Fin )
)
8685baib 872 . . . . . . . 8  |-  ( ( X  \  x )  e.  ~P X  -> 
( ( X  \  x )  e.  ( ~P X  \  Fin ) 
<->  -.  ( X  \  x )  e.  Fin ) )
8784, 86syl 16 . . . . . . 7  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( X  \  x
)  e.  ( ~P X  \  Fin )  <->  -.  ( X  \  x
)  e.  Fin )
)
8880, 87syl5bb 249 . . . . . 6  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( X  \  x
)  e.  F  <->  -.  ( X  \  x )  e. 
Fin ) )
8979, 88orbi12d 691 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
( x  e.  F  \/  ( X  \  x
)  e.  F )  <-> 
( -.  x  e. 
Fin  \/  -.  ( X  \  x )  e. 
Fin ) ) )
9075, 89mpbird 224 . . . 4  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  ~P X )  ->  (
x  e.  F  \/  ( X  \  x
)  e.  F ) )
9190ralrimiva 2789 . . 3  |-  ( X  e.  (FinIa  \  Fin )  ->  A. x  e.  ~P  X ( x  e.  F  \/  ( X 
\  x )  e.  F ) )
92 isufil 17935 . . 3  |-  ( F  e.  ( UFil `  X
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  ~P  X ( x  e.  F  \/  ( X  \  x )  e.  F ) ) )
9365, 91, 92sylanbrc 646 . 2  |-  ( X  e.  (FinIa  \  Fin )  ->  F  e.  ( UFil `  X ) )
94 snfi 7187 . . . . 5  |-  { x }  e.  Fin
95 eldifn 3470 . . . . . 6  |-  ( { x }  e.  ( ~P X  \  Fin )  ->  -.  { x }  e.  Fin )
9695, 1eleq2s 2528 . . . . 5  |-  ( { x }  e.  F  ->  -.  { x }  e.  Fin )
9794, 96mt2 172 . . . 4  |-  -.  {
x }  e.  F
98 uffixsn 17957 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  { x }  e.  F )
9993, 98sylan 458 . . . . 5  |-  ( ( X  e.  (FinIa  \  Fin )  /\  x  e.  |^| F )  ->  { x }  e.  F )
10099ex 424 . . . 4  |-  ( X  e.  (FinIa  \  Fin )  -> 
( x  e.  |^| F  ->  { x }  e.  F ) )
10197, 100mtoi 171 . . 3  |-  ( X  e.  (FinIa  \  Fin )  ->  -.  x  e.  |^| F
)
102101eq0rdv 3662 . 2  |-  ( X  e.  (FinIa  \  Fin )  ->  |^| F  =  (/) )
10393, 102jca 519 1  |-  ( X  e.  (FinIa  \  Fin )  -> 
( F  e.  (
UFil `  X )  /\  |^| F  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   [.wsbc 3161    \ cdif 3317    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {csn 3814   |^|cint 4050   ` cfv 5454   Fincfn 7109  FinIacfin1a 8158   Filcfil 17877   UFilcufil 17931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-fin 7113  df-fin1a 8165  df-fbas 16699  df-fg 16700  df-fil 17878  df-ufil 17933
  Copyright terms: Public domain W3C validator