MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem11 Unicode version

Theorem fin23lem11 8123
Description: Lemma for isfin2-2 8125. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Hypotheses
Ref Expression
fin23lem11.1  |-  ( z  =  ( A  \  x )  ->  ( ps 
<->  ch ) )
fin23lem11.2  |-  ( w  =  ( A  \ 
v )  ->  ( ph 
<->  th ) )
fin23lem11.3  |-  ( ( x  C_  A  /\  v  C_  A )  -> 
( ch  <->  th )
)
Assertion
Ref Expression
fin23lem11  |-  ( B 
C_  ~P A  ->  ( E. x  e.  { c  e.  ~P A  | 
( A  \  c
)  e.  B } A. w  e.  { c  e.  ~P A  | 
( A  \  c
)  e.  B }  -.  ph  ->  E. z  e.  B  A. v  e.  B  -.  ps )
)
Distinct variable groups:    v, c, w, x, z, A    B, c, v, w, x, z    ch, z    ph, v    ps, x    th, w
Allowed substitution hints:    ph( x, z, w, c)    ps( z, w, v, c)    ch( x, w, v, c)    th( x, z, v, c)

Proof of Theorem fin23lem11
StepHypRef Expression
1 difeq2 3395 . . . . 5  |-  ( c  =  x  ->  ( A  \  c )  =  ( A  \  x
) )
21eleq1d 2446 . . . 4  |-  ( c  =  x  ->  (
( A  \  c
)  e.  B  <->  ( A  \  x )  e.  B
) )
32elrab 3028 . . 3  |-  ( x  e.  { c  e. 
~P A  |  ( A  \  c )  e.  B }  <->  ( x  e.  ~P A  /\  ( A  \  x )  e.  B ) )
4 simp2r 984 . . . . 5  |-  ( ( B  C_  ~P A  /\  ( x  e.  ~P A  /\  ( A  \  x )  e.  B
)  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  -> 
( A  \  x
)  e.  B )
5 difss 3410 . . . . . . . . . 10  |-  ( A 
\  v )  C_  A
6 ssun1 3446 . . . . . . . . . . . . 13  |-  A  C_  ( A  u.  x
)
7 undif1 3639 . . . . . . . . . . . . 13  |-  ( ( A  \  x )  u.  x )  =  ( A  u.  x
)
86, 7sseqtr4i 3317 . . . . . . . . . . . 12  |-  A  C_  ( ( A  \  x )  u.  x
)
9 simpl2r 1011 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  ( A  \  x )  e.  B )
10 simpl2l 1010 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  x  e.  ~P A )
11 unexg 4643 . . . . . . . . . . . . 13  |-  ( ( ( A  \  x
)  e.  B  /\  x  e.  ~P A
)  ->  ( ( A  \  x )  u.  x )  e.  _V )
129, 10, 11syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  (
( A  \  x
)  u.  x )  e.  _V )
13 ssexg 4283 . . . . . . . . . . . 12  |-  ( ( A  C_  ( ( A  \  x )  u.  x )  /\  (
( A  \  x
)  u.  x )  e.  _V )  ->  A  e.  _V )
148, 12, 13sylancr 645 . . . . . . . . . . 11  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  A  e.  _V )
15 elpw2g 4297 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  (
( A  \  v
)  e.  ~P A  <->  ( A  \  v ) 
C_  A ) )
1614, 15syl 16 . . . . . . . . . 10  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  (
( A  \  v
)  e.  ~P A  <->  ( A  \  v ) 
C_  A ) )
175, 16mpbiri 225 . . . . . . . . 9  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  ( A  \  v )  e. 
~P A )
18 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  B  C_ 
~P A )
19 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  v  e.  B )
2018, 19sseldd 3285 . . . . . . . . . . . 12  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  v  e.  ~P A )
2120elpwid 3744 . . . . . . . . . . 11  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  v  C_  A )
22 dfss4 3511 . . . . . . . . . . 11  |-  ( v 
C_  A  <->  ( A  \  ( A  \  v
) )  =  v )
2321, 22sylib 189 . . . . . . . . . 10  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  ( A  \  ( A  \ 
v ) )  =  v )
2423, 19eqeltrd 2454 . . . . . . . . 9  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  ( A  \  ( A  \ 
v ) )  e.  B )
25 difeq2 3395 . . . . . . . . . . 11  |-  ( c  =  ( A  \ 
v )  ->  ( A  \  c )  =  ( A  \  ( A  \  v ) ) )
2625eleq1d 2446 . . . . . . . . . 10  |-  ( c  =  ( A  \ 
v )  ->  (
( A  \  c
)  e.  B  <->  ( A  \  ( A  \  v
) )  e.  B
) )
2726elrab 3028 . . . . . . . . 9  |-  ( ( A  \  v )  e.  { c  e. 
~P A  |  ( A  \  c )  e.  B }  <->  ( ( A  \  v )  e. 
~P A  /\  ( A  \  ( A  \ 
v ) )  e.  B ) )
2817, 24, 27sylanbrc 646 . . . . . . . 8  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  ( A  \  v )  e. 
{ c  e.  ~P A  |  ( A  \  c )  e.  B } )
29 simpl3 962 . . . . . . . 8  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )
30 fin23lem11.2 . . . . . . . . . 10  |-  ( w  =  ( A  \ 
v )  ->  ( ph 
<->  th ) )
3130notbid 286 . . . . . . . . 9  |-  ( w  =  ( A  \ 
v )  ->  ( -.  ph  <->  -.  th )
)
3231rspcva 2986 . . . . . . . 8  |-  ( ( ( A  \  v
)  e.  { c  e.  ~P A  | 
( A  \  c
)  e.  B }  /\  A. w  e.  {
c  e.  ~P A  |  ( A  \ 
c )  e.  B }  -.  ph )  ->  -.  th )
3328, 29, 32syl2anc 643 . . . . . . 7  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  -.  th )
34 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B ) )  /\  v  e.  B )  ->  x  e.  ~P A
)
3534elpwid 3744 . . . . . . . . . 10  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B ) )  /\  v  e.  B )  ->  x  C_  A )
36 ssel2 3279 . . . . . . . . . . . 12  |-  ( ( B  C_  ~P A  /\  v  e.  B
)  ->  v  e.  ~P A )
3736adantlr 696 . . . . . . . . . . 11  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B ) )  /\  v  e.  B )  ->  v  e.  ~P A
)
3837elpwid 3744 . . . . . . . . . 10  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B ) )  /\  v  e.  B )  ->  v  C_  A )
39 fin23lem11.3 . . . . . . . . . 10  |-  ( ( x  C_  A  /\  v  C_  A )  -> 
( ch  <->  th )
)
4035, 38, 39syl2anc 643 . . . . . . . . 9  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B ) )  /\  v  e.  B )  ->  ( ch  <->  th )
)
4140notbid 286 . . . . . . . 8  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B ) )  /\  v  e.  B )  ->  ( -.  ch  <->  -.  th )
)
42413adantl3 1115 . . . . . . 7  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  ( -.  ch  <->  -.  th )
)
4333, 42mpbird 224 . . . . . 6  |-  ( ( ( B  C_  ~P A  /\  ( x  e. 
~P A  /\  ( A  \  x )  e.  B )  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  /\  v  e.  B )  ->  -.  ch )
4443ralrimiva 2725 . . . . 5  |-  ( ( B  C_  ~P A  /\  ( x  e.  ~P A  /\  ( A  \  x )  e.  B
)  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  ->  A. v  e.  B  -.  ch )
45 fin23lem11.1 . . . . . . . 8  |-  ( z  =  ( A  \  x )  ->  ( ps 
<->  ch ) )
4645notbid 286 . . . . . . 7  |-  ( z  =  ( A  \  x )  ->  ( -.  ps  <->  -.  ch )
)
4746ralbidv 2662 . . . . . 6  |-  ( z  =  ( A  \  x )  ->  ( A. v  e.  B  -.  ps  <->  A. v  e.  B  -.  ch ) )
4847rspcev 2988 . . . . 5  |-  ( ( ( A  \  x
)  e.  B  /\  A. v  e.  B  -.  ch )  ->  E. z  e.  B  A. v  e.  B  -.  ps )
494, 44, 48syl2anc 643 . . . 4  |-  ( ( B  C_  ~P A  /\  ( x  e.  ~P A  /\  ( A  \  x )  e.  B
)  /\  A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph )  ->  E. z  e.  B  A. v  e.  B  -.  ps )
50493exp 1152 . . 3  |-  ( B 
C_  ~P A  ->  (
( x  e.  ~P A  /\  ( A  \  x )  e.  B
)  ->  ( A. w  e.  { c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph 
->  E. z  e.  B  A. v  e.  B  -.  ps ) ) )
513, 50syl5bi 209 . 2  |-  ( B 
C_  ~P A  ->  (
x  e.  { c  e.  ~P A  | 
( A  \  c
)  e.  B }  ->  ( A. w  e. 
{ c  e.  ~P A  |  ( A  \  c )  e.  B }  -.  ph  ->  E. z  e.  B  A. v  e.  B  -.  ps )
) )
5251rexlimdv 2765 1  |-  ( B 
C_  ~P A  ->  ( E. x  e.  { c  e.  ~P A  | 
( A  \  c
)  e.  B } A. w  e.  { c  e.  ~P A  | 
( A  \  c
)  e.  B }  -.  ph  ->  E. z  e.  B  A. v  e.  B  -.  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643   {crab 2646   _Vcvv 2892    \ cdif 3253    u. cun 3254    C_ wss 3256   ~Pcpw 3735
This theorem is referenced by:  fin2i2  8124  isfin2-2  8125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-pw 3737  df-sn 3756  df-pr 3757  df-uni 3951
  Copyright terms: Public domain W3C validator