MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem14 Structured version   Unicode version

Theorem fin23lem14 8213
Description: Lemma for fin23 8269. 
U will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
Assertion
Ref Expression
fin23lem14  |-  ( ( A  e.  om  /\  U.
ran  t  =/=  (/) )  -> 
( U `  A
)  =/=  (/) )
Distinct variable groups:    t, i, u    A, i, u    U, i, u
Allowed substitution hints:    A( t)    U( t)

Proof of Theorem fin23lem14
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5728 . . . . 5  |-  ( a  =  (/)  ->  ( U `
 a )  =  ( U `  (/) ) )
21neeq1d 2614 . . . 4  |-  ( a  =  (/)  ->  ( ( U `  a )  =/=  (/)  <->  ( U `  (/) )  =/=  (/) ) )
32imbi2d 308 . . 3  |-  ( a  =  (/)  ->  ( ( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  (/) )  =/=  (/) ) ) )
4 fveq2 5728 . . . . 5  |-  ( a  =  b  ->  ( U `  a )  =  ( U `  b ) )
54neeq1d 2614 . . . 4  |-  ( a  =  b  ->  (
( U `  a
)  =/=  (/)  <->  ( U `  b )  =/=  (/) ) )
65imbi2d 308 . . 3  |-  ( a  =  b  ->  (
( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  b )  =/=  (/) ) ) )
7 fveq2 5728 . . . . 5  |-  ( a  =  suc  b  -> 
( U `  a
)  =  ( U `
 suc  b )
)
87neeq1d 2614 . . . 4  |-  ( a  =  suc  b  -> 
( ( U `  a )  =/=  (/)  <->  ( U `  suc  b )  =/=  (/) ) )
98imbi2d 308 . . 3  |-  ( a  =  suc  b  -> 
( ( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  suc  b )  =/=  (/) ) ) )
10 fveq2 5728 . . . . 5  |-  ( a  =  A  ->  ( U `  a )  =  ( U `  A ) )
1110neeq1d 2614 . . . 4  |-  ( a  =  A  ->  (
( U `  a
)  =/=  (/)  <->  ( U `  A )  =/=  (/) ) )
1211imbi2d 308 . . 3  |-  ( a  =  A  ->  (
( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  A )  =/=  (/) ) ) )
13 vex 2959 . . . . . . 7  |-  t  e. 
_V
1413rnex 5133 . . . . . 6  |-  ran  t  e.  _V
1514uniex 4705 . . . . 5  |-  U. ran  t  e.  _V
16 fin23lem.a . . . . . 6  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
1716seqom0g 6713 . . . . 5  |-  ( U. ran  t  e.  _V  ->  ( U `  (/) )  = 
U. ran  t )
1815, 17mp1i 12 . . . 4  |-  ( U. ran  t  =/=  (/)  ->  ( U `  (/) )  = 
U. ran  t )
19 id 20 . . . 4  |-  ( U. ran  t  =/=  (/)  ->  U. ran  t  =/=  (/) )
2018, 19eqnetrd 2619 . . 3  |-  ( U. ran  t  =/=  (/)  ->  ( U `  (/) )  =/=  (/) )
2116fin23lem12 8211 . . . . . . 7  |-  ( b  e.  om  ->  ( U `  suc  b )  =  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) ) )
2221adantr 452 . . . . . 6  |-  ( ( b  e.  om  /\  ( U `  b )  =/=  (/) )  ->  ( U `  suc  b )  =  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) ) )
23 iftrue 3745 . . . . . . . . 9  |-  ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/)  ->  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) )  =  ( U `  b ) )
2423adantr 452 . . . . . . . 8  |-  ( ( ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  /\  (
b  e.  om  /\  ( U `  b )  =/=  (/) ) )  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =  ( U `  b ) )
25 simprr 734 . . . . . . . 8  |-  ( ( ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  /\  (
b  e.  om  /\  ( U `  b )  =/=  (/) ) )  -> 
( U `  b
)  =/=  (/) )
2624, 25eqnetrd 2619 . . . . . . 7  |-  ( ( ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  /\  (
b  e.  om  /\  ( U `  b )  =/=  (/) ) )  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =/=  (/) )
27 iffalse 3746 . . . . . . . . 9  |-  ( -.  ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =  ( ( t `
 b )  i^i  ( U `  b
) ) )
2827adantr 452 . . . . . . . 8  |-  ( ( -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/)  /\  ( b  e.  om  /\  ( U `  b
)  =/=  (/) ) )  ->  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) )  =  ( ( t `
 b )  i^i  ( U `  b
) ) )
29 df-ne 2601 . . . . . . . . . 10  |-  ( ( ( t `  b
)  i^i  ( U `  b ) )  =/=  (/) 
<->  -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) )
3029biimpri 198 . . . . . . . . 9  |-  ( -.  ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  ->  (
( t `  b
)  i^i  ( U `  b ) )  =/=  (/) )
3130adantr 452 . . . . . . . 8  |-  ( ( -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/)  /\  ( b  e.  om  /\  ( U `  b
)  =/=  (/) ) )  ->  ( ( t `
 b )  i^i  ( U `  b
) )  =/=  (/) )
3228, 31eqnetrd 2619 . . . . . . 7  |-  ( ( -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/)  /\  ( b  e.  om  /\  ( U `  b
)  =/=  (/) ) )  ->  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) )  =/=  (/) )
3326, 32pm2.61ian 766 . . . . . 6  |-  ( ( b  e.  om  /\  ( U `  b )  =/=  (/) )  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =/=  (/) )
3422, 33eqnetrd 2619 . . . . 5  |-  ( ( b  e.  om  /\  ( U `  b )  =/=  (/) )  ->  ( U `  suc  b )  =/=  (/) )
3534ex 424 . . . 4  |-  ( b  e.  om  ->  (
( U `  b
)  =/=  (/)  ->  ( U `  suc  b )  =/=  (/) ) )
3635imim2d 50 . . 3  |-  ( b  e.  om  ->  (
( U. ran  t  =/=  (/)  ->  ( U `  b )  =/=  (/) )  -> 
( U. ran  t  =/=  (/)  ->  ( U `  suc  b )  =/=  (/) ) ) )
373, 6, 9, 12, 20, 36finds 4871 . 2  |-  ( A  e.  om  ->  ( U. ran  t  =/=  (/)  ->  ( U `  A )  =/=  (/) ) )
3837imp 419 1  |-  ( ( A  e.  om  /\  U.
ran  t  =/=  (/) )  -> 
( U `  A
)  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956    i^i cin 3319   (/)c0 3628   ifcif 3739   U.cuni 4015   suc csuc 4583   omcom 4845   ran crn 4879   ` cfv 5454    e. cmpt2 6083  seq𝜔cseqom 6704
This theorem is referenced by:  fin23lem21  8219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-recs 6633  df-rdg 6668  df-seqom 6705
  Copyright terms: Public domain W3C validator