MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem26 Structured version   Unicode version

Theorem fin23lem26 8197
Description: Lemma for fin23lem22 8199. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem26  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E. j  e.  S  ( j  i^i  S
)  ~~  i )
Distinct variable group:    i, j, S

Proof of Theorem fin23lem26
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4208 . . . 4  |-  ( i  =  (/)  ->  ( ( j  i^i  S ) 
~~  i  <->  ( j  i^i  S )  ~~  (/) ) )
21rexbidv 2718 . . 3  |-  ( i  =  (/)  ->  ( E. j  e.  S  ( j  i^i  S ) 
~~  i  <->  E. j  e.  S  ( j  i^i  S )  ~~  (/) ) )
3 breq2 4208 . . . 4  |-  ( i  =  a  ->  (
( j  i^i  S
)  ~~  i  <->  ( j  i^i  S )  ~~  a
) )
43rexbidv 2718 . . 3  |-  ( i  =  a  ->  ( E. j  e.  S  ( j  i^i  S
)  ~~  i  <->  E. j  e.  S  ( j  i^i  S )  ~~  a
) )
5 breq2 4208 . . . 4  |-  ( i  =  suc  a  -> 
( ( j  i^i 
S )  ~~  i  <->  ( j  i^i  S ) 
~~  suc  a )
)
65rexbidv 2718 . . 3  |-  ( i  =  suc  a  -> 
( E. j  e.  S  ( j  i^i 
S )  ~~  i  <->  E. j  e.  S  ( j  i^i  S ) 
~~  suc  a )
)
7 ordom 4846 . . . . . 6  |-  Ord  om
87a1i 11 . . . . 5  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  Ord  om )
9 simpl 444 . . . . 5  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  S  C_  om )
10 0fin 7328 . . . . . . . 8  |-  (/)  e.  Fin
11 eleq1 2495 . . . . . . . 8  |-  ( S  =  (/)  ->  ( S  e.  Fin  <->  (/)  e.  Fin ) )
1210, 11mpbiri 225 . . . . . . 7  |-  ( S  =  (/)  ->  S  e. 
Fin )
1312necon3bi 2639 . . . . . 6  |-  ( -.  S  e.  Fin  ->  S  =/=  (/) )
1413adantl 453 . . . . 5  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  S  =/=  (/) )
15 tz7.5 4594 . . . . 5  |-  ( ( Ord  om  /\  S  C_ 
om  /\  S  =/=  (/) )  ->  E. j  e.  S  ( S  i^i  j )  =  (/) )
168, 9, 14, 15syl3anc 1184 . . . 4  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  E. j  e.  S  ( S  i^i  j
)  =  (/) )
17 en0 7162 . . . . . 6  |-  ( ( j  i^i  S ) 
~~  (/)  <->  ( j  i^i 
S )  =  (/) )
18 incom 3525 . . . . . . 7  |-  ( j  i^i  S )  =  ( S  i^i  j
)
1918eqeq1i 2442 . . . . . 6  |-  ( ( j  i^i  S )  =  (/)  <->  ( S  i^i  j )  =  (/) )
2017, 19bitri 241 . . . . 5  |-  ( ( j  i^i  S ) 
~~  (/)  <->  ( S  i^i  j )  =  (/) )
2120rexbii 2722 . . . 4  |-  ( E. j  e.  S  ( j  i^i  S ) 
~~  (/)  <->  E. j  e.  S  ( S  i^i  j
)  =  (/) )
2216, 21sylibr 204 . . 3  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  E. j  e.  S  ( j  i^i  S
)  ~~  (/) )
23 simplrl 737 . . . . . . . . . . 11  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  S  C_  om )
24 omsson 4841 . . . . . . . . . . 11  |-  om  C_  On
2523, 24syl6ss 3352 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  S  C_  On )
2625ssdifssd 3477 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( S  \  suc  j )  C_  On )
27 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  j  e.  S
)  ->  -.  S  e.  Fin )
28 ssel2 3335 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  om  /\  j  e.  S )  ->  j  e.  om )
29 onfin2 7290 . . . . . . . . . . . . . . . . 17  |-  om  =  ( On  i^i  Fin )
30 inss2 3554 . . . . . . . . . . . . . . . . 17  |-  ( On 
i^i  Fin )  C_  Fin
3129, 30eqsstri 3370 . . . . . . . . . . . . . . . 16  |-  om  C_  Fin
32 peano2 4857 . . . . . . . . . . . . . . . 16  |-  ( j  e.  om  ->  suc  j  e.  om )
3331, 32sseldi 3338 . . . . . . . . . . . . . . 15  |-  ( j  e.  om  ->  suc  j  e.  Fin )
3428, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( S  C_  om  /\  j  e.  S )  ->  suc  j  e.  Fin )
3534adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  j  e.  S
)  ->  suc  j  e. 
Fin )
36 ssfi 7321 . . . . . . . . . . . . . 14  |-  ( ( suc  j  e.  Fin  /\  S  C_  suc  j )  ->  S  e.  Fin )
3736ex 424 . . . . . . . . . . . . 13  |-  ( suc  j  e.  Fin  ->  ( S  C_  suc  j  ->  S  e.  Fin )
)
3835, 37syl 16 . . . . . . . . . . . 12  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  j  e.  S
)  ->  ( S  C_ 
suc  j  ->  S  e.  Fin ) )
3927, 38mtod 170 . . . . . . . . . . 11  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  j  e.  S
)  ->  -.  S  C_ 
suc  j )
40 ssdif0 3678 . . . . . . . . . . . 12  |-  ( S 
C_  suc  j  <->  ( S  \  suc  j )  =  (/) )
4140necon3bbii 2629 . . . . . . . . . . 11  |-  ( -.  S  C_  suc  j  <->  ( S  \  suc  j )  =/=  (/) )
4239, 41sylib 189 . . . . . . . . . 10  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  j  e.  S
)  ->  ( S  \  suc  j )  =/=  (/) )
4342ad2ant2lr 729 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( S  \  suc  j )  =/=  (/) )
44 onint 4767 . . . . . . . . 9  |-  ( ( ( S  \  suc  j )  C_  On  /\  ( S  \  suc  j )  =/=  (/) )  ->  |^| ( S  \  suc  j )  e.  ( S  \  suc  j
) )
4526, 43, 44syl2anc 643 . . . . . . . 8  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  |^| ( S 
\  suc  j )  e.  ( S  \  suc  j ) )
4645eldifad 3324 . . . . . . 7  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  |^| ( S 
\  suc  j )  e.  S )
47 simprr 734 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( j  i^i  S )  ~~  a
)
48 vex 2951 . . . . . . . . . . 11  |-  j  e. 
_V
49 vex 2951 . . . . . . . . . . 11  |-  a  e. 
_V
50 en2sn 7178 . . . . . . . . . . 11  |-  ( ( j  e.  _V  /\  a  e.  _V )  ->  { j }  ~~  { a } )
5148, 49, 50mp2an 654 . . . . . . . . . 10  |-  { j }  ~~  { a }
5251a1i 11 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  { j }  ~~  { a } )
53 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  j  e.  S )
5423, 53sseldd 3341 . . . . . . . . . . 11  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  j  e.  om )
55 nnord 4845 . . . . . . . . . . 11  |-  ( j  e.  om  ->  Ord  j )
5654, 55syl 16 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  Ord  j )
57 ordirr 4591 . . . . . . . . . . . 12  |-  ( Ord  j  ->  -.  j  e.  j )
58 inss1 3553 . . . . . . . . . . . . 13  |-  ( j  i^i  S )  C_  j
5958sseli 3336 . . . . . . . . . . . 12  |-  ( j  e.  ( j  i^i 
S )  ->  j  e.  j )
6057, 59nsyl 115 . . . . . . . . . . 11  |-  ( Ord  j  ->  -.  j  e.  ( j  i^i  S
) )
61 disjsn 3860 . . . . . . . . . . 11  |-  ( ( ( j  i^i  S
)  i^i  { j } )  =  (/)  <->  -.  j  e.  ( j  i^i  S ) )
6260, 61sylibr 204 . . . . . . . . . 10  |-  ( Ord  j  ->  ( (
j  i^i  S )  i^i  { j } )  =  (/) )
6356, 62syl 16 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( (
j  i^i  S )  i^i  { j } )  =  (/) )
64 nnord 4845 . . . . . . . . . . . 12  |-  ( a  e.  om  ->  Ord  a )
65 ordirr 4591 . . . . . . . . . . . 12  |-  ( Ord  a  ->  -.  a  e.  a )
6664, 65syl 16 . . . . . . . . . . 11  |-  ( a  e.  om  ->  -.  a  e.  a )
67 disjsn 3860 . . . . . . . . . . 11  |-  ( ( a  i^i  { a } )  =  (/)  <->  -.  a  e.  a )
6866, 67sylibr 204 . . . . . . . . . 10  |-  ( a  e.  om  ->  (
a  i^i  { a } )  =  (/) )
6968ad2antrr 707 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( a  i^i  { a } )  =  (/) )
70 unen 7181 . . . . . . . . 9  |-  ( ( ( ( j  i^i 
S )  ~~  a  /\  { j }  ~~  { a } )  /\  ( ( ( j  i^i  S )  i^i 
{ j } )  =  (/)  /\  (
a  i^i  { a } )  =  (/) ) )  ->  (
( j  i^i  S
)  u.  { j } )  ~~  (
a  u.  { a } ) )
7147, 52, 63, 69, 70syl22anc 1185 . . . . . . . 8  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( (
j  i^i  S )  u.  { j } ) 
~~  ( a  u. 
{ a } ) )
72 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
( j  e.  S  /\  ( j  i^i  S
)  ~~  a )  /\  b  e.  S
) )  ->  b  e.  S )
73 simplrl 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
( j  e.  S  /\  ( j  i^i  S
)  ~~  a )  /\  b  e.  S
) )  ->  S  C_ 
om )
7473, 24syl6ss 3352 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
( j  e.  S  /\  ( j  i^i  S
)  ~~  a )  /\  b  e.  S
) )  ->  S  C_  On )
75 ordsuc 4786 . . . . . . . . . . . . . . . . . 18  |-  ( Ord  j  <->  Ord  suc  j )
7656, 75sylib 189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  Ord  suc  j
)
7776adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
( j  e.  S  /\  ( j  i^i  S
)  ~~  a )  /\  b  e.  S
) )  ->  Ord  suc  j )
78 simp2 958 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  S  C_  On )
7978ssdifssd 3477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  ( S  \  suc  j ) 
C_  On )
80 simpl1 960 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  -.  b  e.  suc  j )  ->  b  e.  S )
81 simpr 448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  -.  b  e.  suc  j )  ->  -.  b  e.  suc  j )
8280, 81eldifd 3323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  -.  b  e.  suc  j )  ->  b  e.  ( S  \  suc  j ) )
8382ex 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  ( -.  b  e.  suc  j  ->  b  e.  ( S  \  suc  j
) ) )
84 onnmin 4775 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  \  suc  j )  C_  On  /\  b  e.  ( S 
\  suc  j )
)  ->  -.  b  e.  |^| ( S  \  suc  j ) )
8579, 83, 84ee12an 1372 . . . . . . . . . . . . . . . . . . 19  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  ( -.  b  e.  suc  j  ->  -.  b  e.  |^| ( S  \  suc  j ) ) )
8685con4d 99 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  (
b  e.  |^| ( S  \  suc  j )  ->  b  e.  suc  j ) )
8786imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  |^| ( S 
\  suc  j )
)  ->  b  e.  suc  j )
88 simp3 959 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  Ord  suc  j )
89 ordsucss 4790 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Ord 
suc  j  ->  (
b  e.  suc  j  ->  suc  b  C_  suc  j ) )
9088, 89syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  (
b  e.  suc  j  ->  suc  b  C_  suc  j ) )
9190imp 419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  suc  b  C_  suc  j )
9291sscond 3476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  ( S  \  suc  j )  C_  ( S  \  suc  b ) )
93 intss 4063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  \  suc  j
)  C_  ( S  \  suc  b )  ->  |^| ( S  \  suc  b )  C_  |^| ( S  \  suc  j ) )
9492, 93syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  |^| ( S  \  suc  b )  C_  |^| ( S  \  suc  j ) )
95 simpl2 961 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  S  C_  On )
96 ordelon 4597 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Ord  suc  j  /\  b  e.  suc  j )  ->  b  e.  On )
9788, 96sylan 458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  b  e.  On )
98 onmindif 4663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  b  e.  On )  ->  b  e.  |^| ( S  \  suc  b ) )
9995, 97, 98syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  b  e.  |^| ( S  \  suc  b
) )
10094, 99sseldd 3341 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  /\  b  e.  suc  j )  ->  b  e.  |^| ( S  \  suc  j
) )
10187, 100impbida 806 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  S  /\  S  C_  On  /\  Ord  suc  j )  ->  (
b  e.  |^| ( S  \  suc  j )  <-> 
b  e.  suc  j
) )
10272, 74, 77, 101syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
( j  e.  S  /\  ( j  i^i  S
)  ~~  a )  /\  b  e.  S
) )  ->  (
b  e.  |^| ( S  \  suc  j )  <-> 
b  e.  suc  j
) )
103 df-suc 4579 . . . . . . . . . . . . . . . 16  |-  suc  j  =  ( j  u. 
{ j } )
104103eleq2i 2499 . . . . . . . . . . . . . . 15  |-  ( b  e.  suc  j  <->  b  e.  ( j  u.  {
j } ) )
105102, 104syl6bb 253 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
( j  e.  S  /\  ( j  i^i  S
)  ~~  a )  /\  b  e.  S
) )  ->  (
b  e.  |^| ( S  \  suc  j )  <-> 
b  e.  ( j  u.  { j } ) ) )
106105expr 599 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( b  e.  S  ->  ( b  e.  |^| ( S  \  suc  j )  <->  b  e.  ( j  u.  {
j } ) ) ) )
107106pm5.32rd 622 . . . . . . . . . . . 12  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( (
b  e.  |^| ( S  \  suc  j )  /\  b  e.  S
)  <->  ( b  e.  ( j  u.  {
j } )  /\  b  e.  S )
) )
108 elin 3522 . . . . . . . . . . . 12  |-  ( b  e.  ( |^| ( S  \  suc  j )  i^i  S )  <->  ( b  e.  |^| ( S  \  suc  j )  /\  b  e.  S ) )
109 elin 3522 . . . . . . . . . . . 12  |-  ( b  e.  ( ( j  u.  { j } )  i^i  S )  <-> 
( b  e.  ( j  u.  { j } )  /\  b  e.  S ) )
110107, 108, 1093bitr4g 280 . . . . . . . . . . 11  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( b  e.  ( |^| ( S 
\  suc  j )  i^i  S )  <->  b  e.  ( ( j  u. 
{ j } )  i^i  S ) ) )
111110eqrdv 2433 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( |^| ( S  \  suc  j
)  i^i  S )  =  ( ( j  u.  { j } )  i^i  S ) )
112 indir 3581 . . . . . . . . . 10  |-  ( ( j  u.  { j } )  i^i  S
)  =  ( ( j  i^i  S )  u.  ( { j }  i^i  S ) )
113111, 112syl6eq 2483 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( |^| ( S  \  suc  j
)  i^i  S )  =  ( ( j  i^i  S )  u.  ( { j }  i^i  S ) ) )
114 snssi 3934 . . . . . . . . . . . 12  |-  ( j  e.  S  ->  { j }  C_  S )
115 df-ss 3326 . . . . . . . . . . . 12  |-  ( { j }  C_  S  <->  ( { j }  i^i  S )  =  { j } )
116114, 115sylib 189 . . . . . . . . . . 11  |-  ( j  e.  S  ->  ( { j }  i^i  S )  =  { j } )
117116uneq2d 3493 . . . . . . . . . 10  |-  ( j  e.  S  ->  (
( j  i^i  S
)  u.  ( { j }  i^i  S
) )  =  ( ( j  i^i  S
)  u.  { j } ) )
118117ad2antrl 709 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( (
j  i^i  S )  u.  ( { j }  i^i  S ) )  =  ( ( j  i^i  S )  u. 
{ j } ) )
119113, 118eqtrd 2467 . . . . . . . 8  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( |^| ( S  \  suc  j
)  i^i  S )  =  ( ( j  i^i  S )  u. 
{ j } ) )
120 df-suc 4579 . . . . . . . . 9  |-  suc  a  =  ( a  u. 
{ a } )
121120a1i 11 . . . . . . . 8  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  suc  a  =  ( a  u.  {
a } ) )
12271, 119, 1213brtr4d 4234 . . . . . . 7  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  ( |^| ( S  \  suc  j
)  i^i  S )  ~~  suc  a )
123 ineq1 3527 . . . . . . . . 9  |-  ( b  =  |^| ( S 
\  suc  j )  ->  ( b  i^i  S
)  =  ( |^| ( S  \  suc  j
)  i^i  S )
)
124123breq1d 4214 . . . . . . . 8  |-  ( b  =  |^| ( S 
\  suc  j )  ->  ( ( b  i^i 
S )  ~~  suc  a 
<->  ( |^| ( S 
\  suc  j )  i^i  S )  ~~  suc  a ) )
125124rspcev 3044 . . . . . . 7  |-  ( (
|^| ( S  \  suc  j )  e.  S  /\  ( |^| ( S 
\  suc  j )  i^i  S )  ~~  suc  a )  ->  E. b  e.  S  ( b  i^i  S )  ~~  suc  a )
12646, 122, 125syl2anc 643 . . . . . 6  |-  ( ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  /\  (
j  e.  S  /\  ( j  i^i  S
)  ~~  a )
)  ->  E. b  e.  S  ( b  i^i  S )  ~~  suc  a )
127126rexlimdvaa 2823 . . . . 5  |-  ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  ->  ( E. j  e.  S  ( j  i^i  S
)  ~~  a  ->  E. b  e.  S  ( b  i^i  S ) 
~~  suc  a )
)
128 ineq1 3527 . . . . . . 7  |-  ( b  =  j  ->  (
b  i^i  S )  =  ( j  i^i 
S ) )
129128breq1d 4214 . . . . . 6  |-  ( b  =  j  ->  (
( b  i^i  S
)  ~~  suc  a  <->  ( j  i^i  S )  ~~  suc  a ) )
130129cbvrexv 2925 . . . . 5  |-  ( E. b  e.  S  ( b  i^i  S ) 
~~  suc  a  <->  E. j  e.  S  ( j  i^i  S )  ~~  suc  a )
131127, 130syl6ib 218 . . . 4  |-  ( ( a  e.  om  /\  ( S  C_  om  /\  -.  S  e.  Fin ) )  ->  ( E. j  e.  S  ( j  i^i  S
)  ~~  a  ->  E. j  e.  S  ( j  i^i  S ) 
~~  suc  a )
)
132131ex 424 . . 3  |-  ( a  e.  om  ->  (
( S  C_  om  /\  -.  S  e.  Fin )  ->  ( E. j  e.  S  ( j  i^i  S )  ~~  a  ->  E. j  e.  S  ( j  i^i  S
)  ~~  suc  a ) ) )
1332, 4, 6, 22, 132finds2 4865 . 2  |-  ( i  e.  om  ->  (
( S  C_  om  /\  -.  S  e.  Fin )  ->  E. j  e.  S  ( j  i^i  S
)  ~~  i )
)
134133impcom 420 1  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E. j  e.  S  ( j  i^i  S
)  ~~  i )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   |^|cint 4042   class class class wbr 4204   Ord word 4572   Oncon0 4573   suc csuc 4575   omcom 4837    ~~ cen 7098   Fincfn 7101
This theorem is referenced by:  fin23lem23  8198
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-1o 6716  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105
  Copyright terms: Public domain W3C validator