MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Unicode version

Theorem fin23lem31 8179
Description: Lemma for fin23 8225. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.b  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
fin23lem.c  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P
( x  i^i  P
)  ~~  w )
)
fin23lem.d  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
fin23lem.e  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
Assertion
Ref Expression
fin23lem31  |-  ( ( t : om -1-1-> V  /\  G  e.  F  /\  U. ran  t  C_  G )  ->  U. ran  Z 
C.  U. ran  t )
Distinct variable groups:    g, i,
t, u, v, x, z, a    F, a, t    V, a    w, a, x, z, P    v,
a, R, i, u    U, a, i, u, v, z    Z, a    g, a, G, t, x
Allowed substitution hints:    P( v, u, t, g, i)    Q( x, z, w, v, u, t, g, i, a)    R( x, z, w, t, g)    U( x, w, t, g)    F( x, z, w, v, u, g, i)    G( z, w, v, u, i)    V( x, z, w, v, u, t, g, i)    Z( x, z, w, v, u, t, g, i)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
21ssfin3ds 8166 . . 3  |-  ( ( G  e.  F  /\  U.
ran  t  C_  G
)  ->  U. ran  t  e.  F )
3 fin23lem.a . . . . . 6  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
4 fin23lem.b . . . . . 6  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
5 fin23lem.c . . . . . 6  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P
( x  i^i  P
)  ~~  w )
)
6 fin23lem.d . . . . . 6  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
7 fin23lem.e . . . . . 6  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
83, 1, 4, 5, 6, 7fin23lem29 8177 . . . . 5  |-  U. ran  Z 
C_  U. ran  t
98a1i 11 . . . 4  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z 
C_  U. ran  t )
103, 1fin23lem21 8175 . . . . . . 7  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
1110ancoms 440 . . . . . 6  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  |^| ran  U  =/=  (/) )
12 n0 3597 . . . . . 6  |-  ( |^| ran 
U  =/=  (/)  <->  E. a 
a  e.  |^| ran  U )
1311, 12sylib 189 . . . . 5  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  E. a 
a  e.  |^| ran  U )
143fnseqom 6671 . . . . . . . . . . . . . 14  |-  U  Fn  om
15 fndm 5503 . . . . . . . . . . . . . 14  |-  ( U  Fn  om  ->  dom  U  =  om )
1614, 15ax-mp 8 . . . . . . . . . . . . 13  |-  dom  U  =  om
17 peano1 4823 . . . . . . . . . . . . . 14  |-  (/)  e.  om
18 ne0i 3594 . . . . . . . . . . . . . 14  |-  ( (/)  e.  om  ->  om  =/=  (/) )
1917, 18ax-mp 8 . . . . . . . . . . . . 13  |-  om  =/=  (/)
2016, 19eqnetri 2584 . . . . . . . . . . . 12  |-  dom  U  =/=  (/)
21 dm0rn0 5045 . . . . . . . . . . . . 13  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
2221necon3bii 2599 . . . . . . . . . . . 12  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
2320, 22mpbi 200 . . . . . . . . . . 11  |-  ran  U  =/=  (/)
24 intssuni 4032 . . . . . . . . . . 11  |-  ( ran 
U  =/=  (/)  ->  |^| ran  U 
C_  U. ran  U )
2523, 24ax-mp 8 . . . . . . . . . 10  |-  |^| ran  U 
C_  U. ran  U
263fin23lem16 8171 . . . . . . . . . 10  |-  U. ran  U  =  U. ran  t
2725, 26sseqtri 3340 . . . . . . . . 9  |-  |^| ran  U 
C_  U. ran  t
2827sseli 3304 . . . . . . . 8  |-  ( a  e.  |^| ran  U  -> 
a  e.  U. ran  t )
2928adantl 453 . . . . . . 7  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  a  e.  U. ran  t )
30 f1fun 5600 . . . . . . . . . . . . 13  |-  ( t : om -1-1-> V  ->  Fun  t )
3130adantr 452 . . . . . . . . . . . 12  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  Fun  t )
323, 1, 4, 5, 6, 7fin23lem30 8178 . . . . . . . . . . . 12  |-  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) )
3331, 32syl 16 . . . . . . . . . . 11  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  ( U. ran  Z  i^i  |^| ran 
U )  =  (/) )
34 disj 3628 . . . . . . . . . . 11  |-  ( ( U. ran  Z  i^i  |^|
ran  U )  =  (/) 
<-> 
A. a  e.  U. ran  Z  -.  a  e. 
|^| ran  U )
3533, 34sylib 189 . . . . . . . . . 10  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  A. a  e.  U. ran  Z  -.  a  e.  |^| ran  U
)
36 rsp 2726 . . . . . . . . . 10  |-  ( A. a  e.  U. ran  Z  -.  a  e.  |^| ran  U  ->  ( a  e. 
U. ran  Z  ->  -.  a  e.  |^| ran  U ) )
3735, 36syl 16 . . . . . . . . 9  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  (
a  e.  U. ran  Z  ->  -.  a  e.  |^|
ran  U ) )
3837con2d 109 . . . . . . . 8  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  (
a  e.  |^| ran  U  ->  -.  a  e.  U.
ran  Z ) )
3938imp 419 . . . . . . 7  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  -.  a  e.  U.
ran  Z )
40 nelne1 2656 . . . . . . 7  |-  ( ( a  e.  U. ran  t  /\  -.  a  e. 
U. ran  Z )  ->  U. ran  t  =/=  U. ran  Z )
4129, 39, 40syl2anc 643 . . . . . 6  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  U. ran  t  =/=  U. ran  Z )
4241necomd 2650 . . . . 5  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  U. ran  Z  =/=  U. ran  t )
4313, 42exlimddv 1645 . . . 4  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z  =/=  U. ran  t
)
44 df-pss 3296 . . . 4  |-  ( U. ran  Z  C.  U. ran  t 
<->  ( U. ran  Z  C_ 
U. ran  t  /\  U.
ran  Z  =/=  U. ran  t ) )
459, 43, 44sylanbrc 646 . . 3  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z 
C.  U. ran  t )
462, 45sylan2 461 . 2  |-  ( ( t : om -1-1-> V  /\  ( G  e.  F  /\  U. ran  t  C_  G ) )  ->  U. ran  Z  C.  U. ran  t )
47463impb 1149 1  |-  ( ( t : om -1-1-> V  /\  G  e.  F  /\  U. ran  t  C_  G )  ->  U. ran  Z 
C.  U. ran  t )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   A.wral 2666   {crab 2670   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280    C. wpss 3281   (/)c0 3588   ifcif 3699   ~Pcpw 3759   U.cuni 3975   |^|cint 4010   class class class wbr 4172    e. cmpt 4226   suc csuc 4543   omcom 4804   dom cdm 4837   ran crn 4838    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -1-1->wf1 5410   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   iota_crio 6501  seq𝜔cseqom 6663    ^m cmap 6977    ~~ cen 7065   Fincfn 7068
This theorem is referenced by:  fin23lem32  8180
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-seqom 6664  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782
  Copyright terms: Public domain W3C validator