MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem32 Unicode version

Theorem fin23lem32 7970
Description: Lemma for fin23 8015. Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.b  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
fin23lem.c  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P
( x  i^i  P
)  ~~  w )
)
fin23lem.d  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
fin23lem.e  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
Assertion
Ref Expression
fin23lem32  |-  ( G  e.  F  ->  E. f A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) ) )
Distinct variable groups:    g, i,
t, u, v, x, z    a, b, i, u, t    F, a, t    w, a, x, z, P, b    v,
a, R, b, i, u    U, a, b, i, u, v, z    f,
a, Z, b    g,
a, G, b, t, f, x
Allowed substitution hints:    P( v, u, t, f, g, i)    Q( x, z, w, v, u, t, f, g, i, a, b)    R( x, z, w, t, f, g)    U( x, w, t, f, g)    F( x, z, w, v, u, f, g, i, b)    G( z, w, v, u, i)    Z( x, z, w, v, u, t, g, i)

Proof of Theorem fin23lem32
StepHypRef Expression
1 fin23lem.a . . . . . . . 8  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
2 fin23lem17.f . . . . . . . 8  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
3 fin23lem.b . . . . . . . 8  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
4 fin23lem.c . . . . . . . 8  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P
( x  i^i  P
)  ~~  w )
)
5 fin23lem.d . . . . . . . 8  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
6 fin23lem.e . . . . . . . 8  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
71, 2, 3, 4, 5, 6fin23lem28 7966 . . . . . . 7  |-  ( t : om -1-1-> _V  ->  Z : om -1-1-> _V )
87ad2antrl 708 . . . . . 6  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  Z : om -1-1-> _V )
9 simprl 732 . . . . . . 7  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
t : om -1-1-> _V )
10 simpl 443 . . . . . . 7  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  G  e.  F )
11 simprr 733 . . . . . . 7  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  U. ran  t  C_  G
)
121, 2, 3, 4, 5, 6fin23lem31 7969 . . . . . . 7  |-  ( ( t : om -1-1-> _V  /\  G  e.  F  /\  U.
ran  t  C_  G
)  ->  U. ran  Z  C.  U. ran  t )
139, 10, 11, 12syl3anc 1182 . . . . . 6  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  U. ran  Z  C.  U. ran  t )
14 f1fn 5438 . . . . . . . . . . . 12  |-  ( t : om -1-1-> _V  ->  t  Fn  om )
15 dffn3 5396 . . . . . . . . . . . 12  |-  ( t  Fn  om  <->  t : om
--> ran  t )
1614, 15sylib 188 . . . . . . . . . . 11  |-  ( t : om -1-1-> _V  ->  t : om --> ran  t
)
1716ad2antrl 708 . . . . . . . . . 10  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
t : om --> ran  t
)
18 sspwuni 3987 . . . . . . . . . . . 12  |-  ( ran  t  C_  ~P G  <->  U.
ran  t  C_  G
)
1918biimpri 197 . . . . . . . . . . 11  |-  ( U. ran  t  C_  G  ->  ran  t  C_  ~P G
)
2019ad2antll 709 . . . . . . . . . 10  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  ran  t  C_  ~P G
)
21 fss 5397 . . . . . . . . . 10  |-  ( ( t : om --> ran  t  /\  ran  t  C_  ~P G )  ->  t : om --> ~P G )
2217, 20, 21syl2anc 642 . . . . . . . . 9  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
t : om --> ~P G
)
23 pwexg 4194 . . . . . . . . . . 11  |-  ( G  e.  F  ->  ~P G  e.  _V )
2423adantr 451 . . . . . . . . . 10  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  ~P G  e.  _V )
25 vex 2791 . . . . . . . . . . . 12  |-  t  e. 
_V
26 f1f 5437 . . . . . . . . . . . 12  |-  ( t : om -1-1-> _V  ->  t : om --> _V )
27 dmfex 5424 . . . . . . . . . . . 12  |-  ( ( t  e.  _V  /\  t : om --> _V )  ->  om  e.  _V )
2825, 26, 27sylancr 644 . . . . . . . . . . 11  |-  ( t : om -1-1-> _V  ->  om  e.  _V )
2928ad2antrl 708 . . . . . . . . . 10  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  om  e.  _V )
30 elmapg 6785 . . . . . . . . . 10  |-  ( ( ~P G  e.  _V  /\ 
om  e.  _V )  ->  ( t  e.  ( ~P G  ^m  om ) 
<->  t : om --> ~P G
) )
3124, 29, 30syl2anc 642 . . . . . . . . 9  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
( t  e.  ( ~P G  ^m  om ) 
<->  t : om --> ~P G
) )
3222, 31mpbird 223 . . . . . . . 8  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
t  e.  ( ~P G  ^m  om )
)
33 f1f 5437 . . . . . . . . . 10  |-  ( Z : om -1-1-> _V  ->  Z : om --> _V )
348, 33syl 15 . . . . . . . . 9  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  Z : om --> _V )
35 fex 5749 . . . . . . . . 9  |-  ( ( Z : om --> _V  /\  om  e.  _V )  ->  Z  e.  _V )
3634, 29, 35syl2anc 642 . . . . . . . 8  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  ->  Z  e.  _V )
37 eqid 2283 . . . . . . . . 9  |-  ( t  e.  ( ~P G  ^m  om )  |->  Z )  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )
3837fvmpt2 5608 . . . . . . . 8  |-  ( ( t  e.  ( ~P G  ^m  om )  /\  Z  e.  _V )  ->  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `
 t )  =  Z )
3932, 36, 38syl2anc 642 . . . . . . 7  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  =  Z )
40 f1eq1 5432 . . . . . . . 8  |-  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  =  Z  ->  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
) : om -1-1-> _V  <->  Z : om -1-1-> _V )
)
41 rneq 4904 . . . . . . . . . 10  |-  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  =  Z  ->  ran  ( (
t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  =  ran  Z
)
4241unieqd 3838 . . . . . . . . 9  |-  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  =  Z  ->  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  =  U. ran  Z )
4342psseq1d 3268 . . . . . . . 8  |-  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  =  Z  ->  ( U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  C.  U. ran  t  <->  U. ran  Z  C.  U.
ran  t ) )
4440, 43anbi12d 691 . . . . . . 7  |-  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  =  Z  ->  ( ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) : om -1-1-> _V 
/\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  C.  U. ran  t
)  <->  ( Z : om
-1-1-> _V  /\  U. ran  Z 
C.  U. ran  t ) ) )
4539, 44syl 15 . . . . . 6  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
( ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
) : om -1-1-> _V  /\ 
U. ran  ( (
t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  C.  U. ran  t
)  <->  ( Z : om
-1-1-> _V  /\  U. ran  Z 
C.  U. ran  t ) ) )
468, 13, 45mpbir2and 888 . . . . 5  |-  ( ( G  e.  F  /\  ( t : om -1-1-> _V 
/\  U. ran  t  C_  G ) )  -> 
( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `
 t ) : om -1-1-> _V  /\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  C.  U. ran  t ) )
4746ex 423 . . . 4  |-  ( G  e.  F  ->  (
( t : om -1-1-> _V 
/\  U. ran  t  C_  G )  ->  (
( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) : om -1-1-> _V 
/\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  C.  U. ran  t
) ) )
4847alrimiv 1617 . . 3  |-  ( G  e.  F  ->  A. t
( ( t : om -1-1-> _V  /\  U. ran  t  C_  G )  -> 
( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `
 t ) : om -1-1-> _V  /\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  C.  U. ran  t ) ) )
49 ovex 5883 . . . . 5  |-  ( ~P G  ^m  om )  e.  _V
5049mptex 5746 . . . 4  |-  ( t  e.  ( ~P G  ^m  om )  |->  Z )  e.  _V
51 nfmpt1 4109 . . . . . 6  |-  F/_ t
( t  e.  ( ~P G  ^m  om )  |->  Z )
5251nfeq2 2430 . . . . 5  |-  F/ t  f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )
53 fveq1 5524 . . . . . . . 8  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  -> 
( f `  t
)  =  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
) )
54 f1eq1 5432 . . . . . . . 8  |-  ( ( f `  t )  =  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `
 t )  -> 
( ( f `  t ) : om -1-1-> _V  <->  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) : om -1-1-> _V ) )
5553, 54syl 15 . . . . . . 7  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  -> 
( ( f `  t ) : om -1-1-> _V  <->  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) : om -1-1-> _V ) )
5653rneqd 4906 . . . . . . . . 9  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  ->  ran  ( f `  t
)  =  ran  (
( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) )
5756unieqd 3838 . . . . . . . 8  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  ->  U. ran  ( f `  t )  =  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) )
5857psseq1d 3268 . . . . . . 7  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  -> 
( U. ran  (
f `  t )  C.  U. ran  t  <->  U. ran  (
( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  C.  U. ran  t ) )
5955, 58anbi12d 691 . . . . . 6  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  -> 
( ( ( f `
 t ) : om -1-1-> _V  /\  U. ran  ( f `  t
)  C.  U. ran  t
)  <->  ( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
) : om -1-1-> _V  /\ 
U. ran  ( (
t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  C.  U. ran  t
) ) )
6059imbi2d 307 . . . . 5  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  -> 
( ( ( t : om -1-1-> _V  /\  U.
ran  t  C_  G
)  ->  ( (
f `  t ) : om -1-1-> _V  /\  U. ran  ( f `  t
)  C.  U. ran  t
) )  <->  ( (
t : om -1-1-> _V  /\ 
U. ran  t  C_  G )  ->  (
( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) : om -1-1-> _V 
/\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  C.  U. ran  t
) ) ) )
6152, 60albid 1752 . . . 4  |-  ( f  =  ( t  e.  ( ~P G  ^m  om )  |->  Z )  -> 
( A. t ( ( t : om -1-1-> _V 
/\  U. ran  t  C_  G )  ->  (
( f `  t
) : om -1-1-> _V  /\ 
U. ran  ( f `  t )  C.  U. ran  t ) )  <->  A. t
( ( t : om -1-1-> _V  /\  U. ran  t  C_  G )  -> 
( ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `
 t ) : om -1-1-> _V  /\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t )  C.  U. ran  t ) ) ) )
6250, 61spcev 2875 . . 3  |-  ( A. t ( ( t : om -1-1-> _V  /\  U.
ran  t  C_  G
)  ->  ( (
( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t ) : om -1-1-> _V 
/\  U. ran  ( ( t  e.  ( ~P G  ^m  om )  |->  Z ) `  t
)  C.  U. ran  t
) )  ->  E. f A. t ( ( t : om -1-1-> _V  /\  U.
ran  t  C_  G
)  ->  ( (
f `  t ) : om -1-1-> _V  /\  U. ran  ( f `  t
)  C.  U. ran  t
) ) )
6348, 62syl 15 . 2  |-  ( G  e.  F  ->  E. f A. t ( ( t : om -1-1-> _V  /\  U.
ran  t  C_  G
)  ->  ( (
f `  t ) : om -1-1-> _V  /\  U. ran  ( f `  t
)  C.  U. ran  t
) ) )
64 f1eq1 5432 . . . . . 6  |-  ( b  =  t  ->  (
b : om -1-1-> _V  <->  t : om -1-1-> _V )
)
65 rneq 4904 . . . . . . . 8  |-  ( b  =  t  ->  ran  b  =  ran  t )
6665unieqd 3838 . . . . . . 7  |-  ( b  =  t  ->  U. ran  b  =  U. ran  t
)
6766sseq1d 3205 . . . . . 6  |-  ( b  =  t  ->  ( U. ran  b  C_  G  <->  U.
ran  t  C_  G
) )
6864, 67anbi12d 691 . . . . 5  |-  ( b  =  t  ->  (
( b : om -1-1-> _V 
/\  U. ran  b  C_  G )  <->  ( t : om -1-1-> _V  /\  U. ran  t  C_  G ) ) )
69 fveq2 5525 . . . . . . 7  |-  ( b  =  t  ->  (
f `  b )  =  ( f `  t ) )
70 f1eq1 5432 . . . . . . 7  |-  ( ( f `  b )  =  ( f `  t )  ->  (
( f `  b
) : om -1-1-> _V  <->  ( f `  t ) : om -1-1-> _V )
)
7169, 70syl 15 . . . . . 6  |-  ( b  =  t  ->  (
( f `  b
) : om -1-1-> _V  <->  ( f `  t ) : om -1-1-> _V )
)
7269rneqd 4906 . . . . . . . 8  |-  ( b  =  t  ->  ran  ( f `  b
)  =  ran  (
f `  t )
)
7372unieqd 3838 . . . . . . 7  |-  ( b  =  t  ->  U. ran  ( f `  b
)  =  U. ran  ( f `  t
) )
7473, 66psseq12d 3270 . . . . . 6  |-  ( b  =  t  ->  ( U. ran  ( f `  b )  C.  U. ran  b  <->  U. ran  ( f `
 t )  C.  U.
ran  t ) )
7571, 74anbi12d 691 . . . . 5  |-  ( b  =  t  ->  (
( ( f `  b ) : om -1-1-> _V 
/\  U. ran  ( f `
 b )  C.  U.
ran  b )  <->  ( (
f `  t ) : om -1-1-> _V  /\  U. ran  ( f `  t
)  C.  U. ran  t
) ) )
7668, 75imbi12d 311 . . . 4  |-  ( b  =  t  ->  (
( ( b : om -1-1-> _V  /\  U. ran  b  C_  G )  -> 
( ( f `  b ) : om -1-1-> _V 
/\  U. ran  ( f `
 b )  C.  U.
ran  b ) )  <-> 
( ( t : om -1-1-> _V  /\  U. ran  t  C_  G )  -> 
( ( f `  t ) : om -1-1-> _V 
/\  U. ran  ( f `
 t )  C.  U.
ran  t ) ) ) )
7776cbvalv 1942 . . 3  |-  ( A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) )  <->  A. t
( ( t : om -1-1-> _V  /\  U. ran  t  C_  G )  -> 
( ( f `  t ) : om -1-1-> _V 
/\  U. ran  ( f `
 t )  C.  U.
ran  t ) ) )
7877exbii 1569 . 2  |-  ( E. f A. b ( ( b : om -1-1-> _V 
/\  U. ran  b  C_  G )  ->  (
( f `  b
) : om -1-1-> _V  /\ 
U. ran  ( f `  b )  C.  U. ran  b ) )  <->  E. f A. t ( ( t : om -1-1-> _V  /\  U.
ran  t  C_  G
)  ->  ( (
f `  t ) : om -1-1-> _V  /\  U. ran  ( f `  t
)  C.  U. ran  t
) ) )
7963, 78sylibr 203 1  |-  ( G  e.  F  ->  E. f A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   {crab 2547   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152    C. wpss 3153   (/)c0 3455   ifcif 3565   ~Pcpw 3625   U.cuni 3827   |^|cint 3862   class class class wbr 4023    e. cmpt 4077   suc csuc 4394   omcom 4656   ran crn 4690    o. ccom 4693    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   iota_crio 6297  seq𝜔cseqom 6459    ^m cmap 6772    ~~ cen 6860   Fincfn 6863
This theorem is referenced by:  fin23lem33  7971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572
  Copyright terms: Public domain W3C validator