MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem33 Unicode version

Theorem fin23lem33 8189
Description: Lemma for fin23 8233. Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem33.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem33  |-  ( G  e.  F  ->  E. f A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) ) )
Distinct variable groups:    a, b,
f, g, x, G    F, a
Allowed substitution hints:    F( x, f, g, b)

Proof of Theorem fin23lem33
Dummy variables  c 
d  e  i  j  k  l  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5695 . . . . . . 7  |-  ( j  =  c  ->  (
e `  j )  =  ( e `  c ) )
21ineq1d 3509 . . . . . 6  |-  ( j  =  c  ->  (
( e `  j
)  i^i  k )  =  ( ( e `
 c )  i^i  k ) )
32eqeq1d 2420 . . . . 5  |-  ( j  =  c  ->  (
( ( e `  j )  i^i  k
)  =  (/)  <->  ( (
e `  c )  i^i  k )  =  (/) ) )
43, 2ifbieq2d 3727 . . . 4  |-  ( j  =  c  ->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) )  =  if ( ( ( e `  c
)  i^i  k )  =  (/) ,  k ,  ( ( e `  c )  i^i  k
) ) )
5 ineq2 3504 . . . . . 6  |-  ( k  =  d  ->  (
( e `  c
)  i^i  k )  =  ( ( e `
 c )  i^i  d ) )
65eqeq1d 2420 . . . . 5  |-  ( k  =  d  ->  (
( ( e `  c )  i^i  k
)  =  (/)  <->  ( (
e `  c )  i^i  d )  =  (/) ) )
7 id 20 . . . . 5  |-  ( k  =  d  ->  k  =  d )
86, 7, 5ifbieq12d 3729 . . . 4  |-  ( k  =  d  ->  if ( ( ( e `
 c )  i^i  k )  =  (/) ,  k ,  ( ( e `  c )  i^i  k ) )  =  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) )
94, 8cbvmpt2v 6119 . . 3  |-  ( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `  j )  i^i  k
)  =  (/) ,  k ,  ( ( e `
 j )  i^i  k ) ) )  =  ( c  e. 
om ,  d  e. 
_V  |->  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) )
10 eqid 2412 . . 3  |-  U. ran  e  =  U. ran  e
11 seqomeq12 6678 . . 3  |-  ( ( ( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) )  =  ( c  e.  om ,  d  e.  _V  |->  if ( ( ( e `  c )  i^i  d
)  =  (/) ,  d ,  ( ( e `
 c )  i^i  d ) ) )  /\  U. ran  e  =  U. ran  e )  -> seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  = seq𝜔 ( ( c  e. 
om ,  d  e. 
_V  |->  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) ) , 
U. ran  e )
)
129, 10, 11mp2an 654 . 2  |- seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  = seq𝜔 ( ( c  e. 
om ,  d  e. 
_V  |->  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) ) , 
U. ran  e )
13 fin23lem33.f . 2  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
14 fveq2 5695 . . . 4  |-  ( l  =  y  ->  (
e `  l )  =  ( e `  y ) )
1514sseq2d 3344 . . 3  |-  ( l  =  y  ->  ( |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
)  <->  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  y
) ) )
1615cbvrabv 2923 . 2  |-  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  =  { y  e.  om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  y ) }
17 eqid 2412 . 2  |-  ( g  e.  om  |->  ( iota_ x  e.  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  ( x  i^i 
{ l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } )  ~~  g ) )  =  ( g  e.  om  |->  ( iota_ x  e.  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) }  ( x  i^i  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } )  ~~  g
) )
18 eqid 2412 . 2  |-  ( g  e.  om  |->  ( iota_ x  e.  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ( x  i^i  ( om 
\  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) )  ~~  g ) )  =  ( g  e.  om  |->  ( iota_ x  e.  ( om  \  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) ( x  i^i  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ) 
~~  g ) )
19 eqid 2412 . 2  |-  if ( { l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) }  e.  Fin ,  ( e  o.  (
g  e.  om  |->  (
iota_ x  e.  ( om  \  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) ( x  i^i  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ) 
~~  g ) ) ) ,  ( ( i  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  |->  ( ( e `
 i )  \  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )
) )  o.  (
g  e.  om  |->  (
iota_ x  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  ( x  i^i 
{ l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } )  ~~  g ) ) ) )  =  if ( { l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) }  e.  Fin ,  ( e  o.  (
g  e.  om  |->  (
iota_ x  e.  ( om  \  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) ( x  i^i  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ) 
~~  g ) ) ) ,  ( ( i  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  |->  ( ( e `
 i )  \  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )
) )  o.  (
g  e.  om  |->  (
iota_ x  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  ( x  i^i 
{ l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } )  ~~  g ) ) ) )
2012, 13, 16, 17, 18, 19fin23lem32 8188 1  |-  ( G  e.  F  ->  E. f A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2398   A.wral 2674   {crab 2678   _Vcvv 2924    \ cdif 3285    i^i cin 3287    C_ wss 3288    C. wpss 3289   (/)c0 3596   ifcif 3707   ~Pcpw 3767   U.cuni 3983   |^|cint 4018   class class class wbr 4180    e. cmpt 4234   suc csuc 4551   omcom 4812   ran crn 4846    o. ccom 4849   -1-1->wf1 5418   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   iota_crio 6509  seq𝜔cseqom 6671    ^m cmap 6985    ~~ cen 7073   Fincfn 7076
This theorem is referenced by:  fin23lem41  8196
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-seqom 6672  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-card 7790
  Copyright terms: Public domain W3C validator