MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem39 Structured version   Unicode version

Theorem fin23lem39 8230
Description: Lemma for fin23 8269. Thus, we have that  g could not have been in  F after all. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.f  |-  ( ph  ->  h : om -1-1-> _V )
fin23lem.g  |-  ( ph  ->  U. ran  h  C_  G )
fin23lem.h  |-  ( ph  ->  A. j ( ( j : om -1-1-> _V  /\ 
U. ran  j  C_  G )  ->  (
( i `  j
) : om -1-1-> _V  /\ 
U. ran  ( i `  j )  C.  U. ran  j ) ) )
fin23lem.i  |-  Y  =  ( rec ( i ,  h )  |`  om )
Assertion
Ref Expression
fin23lem39  |-  ( ph  ->  -.  G  e.  F
)
Distinct variable groups:    g, a,
i, j, x, h, G    F, a    ph, a,
j    Y, a, j
Allowed substitution hints:    ph( x, g, h, i)    F( x, g, h, i, j)    Y( x, g, h, i)

Proof of Theorem fin23lem39
Dummy variables  c 
d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem33.f . . 3  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
2 fin23lem.f . . 3  |-  ( ph  ->  h : om -1-1-> _V )
3 fin23lem.g . . 3  |-  ( ph  ->  U. ran  h  C_  G )
4 fin23lem.h . . 3  |-  ( ph  ->  A. j ( ( j : om -1-1-> _V  /\ 
U. ran  j  C_  G )  ->  (
( i `  j
) : om -1-1-> _V  /\ 
U. ran  ( i `  j )  C.  U. ran  j ) ) )
5 fin23lem.i . . 3  |-  Y  =  ( rec ( i ,  h )  |`  om )
61, 2, 3, 4, 5fin23lem38 8229 . 2  |-  ( ph  ->  -.  |^| ran  ( c  e.  om  |->  U. ran  ( Y `  c ) )  e.  ran  (
c  e.  om  |->  U.
ran  ( Y `  c ) ) )
71, 2, 3, 4, 5fin23lem34 8226 . . . . . . . 8  |-  ( (
ph  /\  c  e.  om )  ->  ( ( Y `  c ) : om -1-1-> _V  /\  U. ran  ( Y `  c ) 
C_  G ) )
87simprd 450 . . . . . . 7  |-  ( (
ph  /\  c  e.  om )  ->  U. ran  ( Y `  c )  C_  G )
98adantlr 696 . . . . . 6  |-  ( ( ( ph  /\  G  e.  F )  /\  c  e.  om )  ->  U. ran  ( Y `  c ) 
C_  G )
10 elpw2g 4363 . . . . . . 7  |-  ( G  e.  F  ->  ( U. ran  ( Y `  c )  e.  ~P G 
<-> 
U. ran  ( Y `  c )  C_  G
) )
1110ad2antlr 708 . . . . . 6  |-  ( ( ( ph  /\  G  e.  F )  /\  c  e.  om )  ->  ( U. ran  ( Y `  c )  e.  ~P G 
<-> 
U. ran  ( Y `  c )  C_  G
) )
129, 11mpbird 224 . . . . 5  |-  ( ( ( ph  /\  G  e.  F )  /\  c  e.  om )  ->  U. ran  ( Y `  c )  e.  ~P G )
13 eqid 2436 . . . . 5  |-  ( c  e.  om  |->  U. ran  ( Y `  c ) )  =  ( c  e.  om  |->  U. ran  ( Y `  c ) )
1412, 13fmptd 5893 . . . 4  |-  ( (
ph  /\  G  e.  F )  ->  (
c  e.  om  |->  U.
ran  ( Y `  c ) ) : om --> ~P G )
15 pwexg 4383 . . . . 5  |-  ( G  e.  F  ->  ~P G  e.  _V )
16 vex 2959 . . . . . . 7  |-  h  e. 
_V
17 f1f 5639 . . . . . . 7  |-  ( h : om -1-1-> _V  ->  h : om --> _V )
18 dmfex 5626 . . . . . . 7  |-  ( ( h  e.  _V  /\  h : om --> _V )  ->  om  e.  _V )
1916, 17, 18sylancr 645 . . . . . 6  |-  ( h : om -1-1-> _V  ->  om  e.  _V )
202, 19syl 16 . . . . 5  |-  ( ph  ->  om  e.  _V )
21 elmapg 7031 . . . . 5  |-  ( ( ~P G  e.  _V  /\ 
om  e.  _V )  ->  ( ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  e.  ( ~P G  ^m  om )  <->  ( c  e.  om  |->  U. ran  ( Y `
 c ) ) : om --> ~P G
) )
2215, 20, 21syl2anr 465 . . . 4  |-  ( (
ph  /\  G  e.  F )  ->  (
( c  e.  om  |->  U.
ran  ( Y `  c ) )  e.  ( ~P G  ^m  om )  <->  ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) : om --> ~P G
) )
2314, 22mpbird 224 . . 3  |-  ( (
ph  /\  G  e.  F )  ->  (
c  e.  om  |->  U.
ran  ( Y `  c ) )  e.  ( ~P G  ^m  om ) )
241isfin3ds 8209 . . . . 5  |-  ( G  e.  F  ->  ( G  e.  F  <->  A. d  e.  ( ~P G  ^m  om ) ( A. e  e.  om  ( d `  suc  e )  C_  (
d `  e )  ->  |^| ran  d  e. 
ran  d ) ) )
2524ibi 233 . . . 4  |-  ( G  e.  F  ->  A. d  e.  ( ~P G  ^m  om ) ( A. e  e.  om  ( d `  suc  e )  C_  (
d `  e )  ->  |^| ran  d  e. 
ran  d ) )
2625adantl 453 . . 3  |-  ( (
ph  /\  G  e.  F )  ->  A. d  e.  ( ~P G  ^m  om ) ( A. e  e.  om  ( d `  suc  e )  C_  (
d `  e )  ->  |^| ran  d  e. 
ran  d ) )
271, 2, 3, 4, 5fin23lem35 8227 . . . . . . 7  |-  ( (
ph  /\  e  e.  om )  ->  U. ran  ( Y `  suc  e ) 
C.  U. ran  ( Y `
 e ) )
2827pssssd 3444 . . . . . 6  |-  ( (
ph  /\  e  e.  om )  ->  U. ran  ( Y `  suc  e ) 
C_  U. ran  ( Y `
 e ) )
29 peano2 4865 . . . . . . . . 9  |-  ( e  e.  om  ->  suc  e  e.  om )
30 fveq2 5728 . . . . . . . . . . . 12  |-  ( c  =  suc  e  -> 
( Y `  c
)  =  ( Y `
 suc  e )
)
3130rneqd 5097 . . . . . . . . . . 11  |-  ( c  =  suc  e  ->  ran  ( Y `  c
)  =  ran  ( Y `  suc  e ) )
3231unieqd 4026 . . . . . . . . . 10  |-  ( c  =  suc  e  ->  U. ran  ( Y `  c )  =  U. ran  ( Y `  suc  e ) )
33 fvex 5742 . . . . . . . . . . . 12  |-  ( Y `
 suc  e )  e.  _V
3433rnex 5133 . . . . . . . . . . 11  |-  ran  ( Y `  suc  e )  e.  _V
3534uniex 4705 . . . . . . . . . 10  |-  U. ran  ( Y `  suc  e
)  e.  _V
3632, 13, 35fvmpt 5806 . . . . . . . . 9  |-  ( suc  e  e.  om  ->  ( ( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  suc  e )  =  U. ran  ( Y `  suc  e ) )
3729, 36syl 16 . . . . . . . 8  |-  ( e  e.  om  ->  (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  suc  e )  =  U. ran  ( Y `  suc  e ) )
38 fveq2 5728 . . . . . . . . . . 11  |-  ( c  =  e  ->  ( Y `  c )  =  ( Y `  e ) )
3938rneqd 5097 . . . . . . . . . 10  |-  ( c  =  e  ->  ran  ( Y `  c )  =  ran  ( Y `
 e ) )
4039unieqd 4026 . . . . . . . . 9  |-  ( c  =  e  ->  U. ran  ( Y `  c )  =  U. ran  ( Y `  e )
)
41 fvex 5742 . . . . . . . . . . 11  |-  ( Y `
 e )  e. 
_V
4241rnex 5133 . . . . . . . . . 10  |-  ran  ( Y `  e )  e.  _V
4342uniex 4705 . . . . . . . . 9  |-  U. ran  ( Y `  e )  e.  _V
4440, 13, 43fvmpt 5806 . . . . . . . 8  |-  ( e  e.  om  ->  (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e )  =  U. ran  ( Y `  e
) )
4537, 44sseq12d 3377 . . . . . . 7  |-  ( e  e.  om  ->  (
( ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) `
 suc  e )  C_  ( ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) `
 e )  <->  U. ran  ( Y `  suc  e ) 
C_  U. ran  ( Y `
 e ) ) )
4645adantl 453 . . . . . 6  |-  ( (
ph  /\  e  e.  om )  ->  ( (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  suc  e )  C_  (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e )  <->  U. ran  ( Y `  suc  e ) 
C_  U. ran  ( Y `
 e ) ) )
4728, 46mpbird 224 . . . . 5  |-  ( (
ph  /\  e  e.  om )  ->  ( (
c  e.  om  |->  U.
ran  ( Y `  c ) ) `  suc  e )  C_  (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e ) )
4847ralrimiva 2789 . . . 4  |-  ( ph  ->  A. e  e.  om  ( ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) `
 suc  e )  C_  ( ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) `
 e ) )
4948adantr 452 . . 3  |-  ( (
ph  /\  G  e.  F )  ->  A. e  e.  om  ( ( c  e.  om  |->  U. ran  ( Y `  c ) ) `  suc  e
)  C_  ( (
c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e ) )
50 fveq1 5727 . . . . . . 7  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ( d `  suc  e )  =  ( ( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  suc  e ) )
51 fveq1 5727 . . . . . . 7  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ( d `  e )  =  ( ( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e ) )
5250, 51sseq12d 3377 . . . . . 6  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ( ( d `
 suc  e )  C_  ( d `  e
)  <->  ( ( c  e.  om  |->  U. ran  ( Y `  c ) ) `  suc  e
)  C_  ( (
c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e ) ) )
5352ralbidv 2725 . . . . 5  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ( A. e  e.  om  ( d `  suc  e )  C_  (
d `  e )  <->  A. e  e.  om  (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  suc  e )  C_  (
( c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e ) ) )
54 rneq 5095 . . . . . . 7  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ran  d  =  ran  ( c  e.  om  |->  U.
ran  ( Y `  c ) ) )
5554inteqd 4055 . . . . . 6  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  |^| ran  d  = 
|^| ran  ( c  e.  om  |->  U. ran  ( Y `
 c ) ) )
5655, 54eleq12d 2504 . . . . 5  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ( |^| ran  d  e.  ran  d  <->  |^| ran  (
c  e.  om  |->  U.
ran  ( Y `  c ) )  e. 
ran  ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) ) )
5753, 56imbi12d 312 . . . 4  |-  ( d  =  ( c  e. 
om  |->  U. ran  ( Y `
 c ) )  ->  ( ( A. e  e.  om  (
d `  suc  e ) 
C_  ( d `  e )  ->  |^| ran  d  e.  ran  d )  <-> 
( A. e  e. 
om  ( ( c  e.  om  |->  U. ran  ( Y `  c ) ) `  suc  e
)  C_  ( (
c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e )  ->  |^| ran  ( c  e.  om  |->  U.
ran  ( Y `  c ) )  e. 
ran  ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) ) ) )
5857rspcv 3048 . . 3  |-  ( ( c  e.  om  |->  U.
ran  ( Y `  c ) )  e.  ( ~P G  ^m  om )  ->  ( A. d  e.  ( ~P G  ^m  om ) ( A. e  e.  om  ( d `  suc  e )  C_  (
d `  e )  ->  |^| ran  d  e. 
ran  d )  -> 
( A. e  e. 
om  ( ( c  e.  om  |->  U. ran  ( Y `  c ) ) `  suc  e
)  C_  ( (
c  e.  om  |->  U.
ran  ( Y `  c ) ) `  e )  ->  |^| ran  ( c  e.  om  |->  U.
ran  ( Y `  c ) )  e. 
ran  ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) ) ) )
5923, 26, 49, 58syl3c 59 . 2  |-  ( (
ph  /\  G  e.  F )  ->  |^| ran  ( c  e.  om  |->  U.
ran  ( Y `  c ) )  e. 
ran  ( c  e. 
om  |->  U. ran  ( Y `
 c ) ) )
606, 59mtand 641 1  |-  ( ph  ->  -.  G  e.  F
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   _Vcvv 2956    C_ wss 3320    C. wpss 3321   ~Pcpw 3799   U.cuni 4015   |^|cint 4050    e. cmpt 4266   suc csuc 4583   omcom 4845   ran crn 4879    |` cres 4880   -->wf 5450   -1-1->wf1 5451   ` cfv 5454  (class class class)co 6081   reccrdg 6667    ^m cmap 7018
This theorem is referenced by:  fin23lem41  8232
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-map 7020
  Copyright terms: Public domain W3C validator