MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem40 Unicode version

Theorem fin23lem40 7977
Description: Lemma for fin23 8015. FinII sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem40  |-  ( A  e. FinII  ->  A  e.  F
)
Distinct variable groups:    g, a, x, A    F, a
Allowed substitution hints:    F( x, g)

Proof of Theorem fin23lem40
Dummy variables  b 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6792 . . . 4  |-  ( f  e.  ( ~P A  ^m  om )  ->  f : om --> ~P A )
2 simpl 443 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  A  e. FinII )
3 frn 5395 . . . . . . 7  |-  ( f : om --> ~P A  ->  ran  f  C_  ~P A )
43ad2antrl 708 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  ran  f  C_  ~P A )
5 fdm 5393 . . . . . . . . 9  |-  ( f : om --> ~P A  ->  dom  f  =  om )
6 peano1 4675 . . . . . . . . . 10  |-  (/)  e.  om
7 ne0i 3461 . . . . . . . . . 10  |-  ( (/)  e.  om  ->  om  =/=  (/) )
86, 7mp1i 11 . . . . . . . . 9  |-  ( f : om --> ~P A  ->  om  =/=  (/) )
95, 8eqnetrd 2464 . . . . . . . 8  |-  ( f : om --> ~P A  ->  dom  f  =/=  (/) )
10 dm0rn0 4895 . . . . . . . . 9  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
1110necon3bii 2478 . . . . . . . 8  |-  ( dom  f  =/=  (/)  <->  ran  f  =/=  (/) )
129, 11sylib 188 . . . . . . 7  |-  ( f : om --> ~P A  ->  ran  f  =/=  (/) )
1312ad2antrl 708 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  ran  f  =/=  (/) )
14 ffn 5389 . . . . . . . . 9  |-  ( f : om --> ~P A  ->  f  Fn  om )
1514ad2antrl 708 . . . . . . . 8  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  f  Fn  om )
16 sspss 3275 . . . . . . . . . . 11  |-  ( ( f `  suc  b
)  C_  ( f `  b )  <->  ( (
f `  suc  b ) 
C.  ( f `  b )  \/  (
f `  suc  b )  =  ( f `  b ) ) )
17 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( f `
 b )  e. 
_V
18 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( f `
 suc  b )  e.  _V
1917, 18brcnv 4864 . . . . . . . . . . . . . 14  |-  ( ( f `  b ) `' [ C.]  ( f `  suc  b )  <->  ( f `  suc  b ) [ C.]  ( f `  b
) )
2017brrpss 6280 . . . . . . . . . . . . . 14  |-  ( ( f `  suc  b
) [ C.]  ( f `  b )  <->  ( f `  suc  b )  C.  ( f `  b
) )
2119, 20bitri 240 . . . . . . . . . . . . 13  |-  ( ( f `  b ) `' [ C.]  ( f `  suc  b )  <->  ( f `  suc  b )  C.  ( f `  b
) )
22 eqcom 2285 . . . . . . . . . . . . 13  |-  ( ( f `  b )  =  ( f `  suc  b )  <->  ( f `  suc  b )  =  ( f `  b
) )
2321, 22orbi12i 507 . . . . . . . . . . . 12  |-  ( ( ( f `  b
) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) )  <->  ( (
f `  suc  b ) 
C.  ( f `  b )  \/  (
f `  suc  b )  =  ( f `  b ) ) )
2423biimpri 197 . . . . . . . . . . 11  |-  ( ( ( f `  suc  b )  C.  (
f `  b )  \/  ( f `  suc  b )  =  ( f `  b ) )  ->  ( (
f `  b ) `' [ C.]  ( f `  suc  b )  \/  (
f `  b )  =  ( f `  suc  b ) ) )
2516, 24sylbi 187 . . . . . . . . . 10  |-  ( ( f `  suc  b
)  C_  ( f `  b )  ->  (
( f `  b
) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) ) )
2625ralimi 2618 . . . . . . . . 9  |-  ( A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b )  ->  A. b  e.  om  ( ( f `
 b ) `' [
C.]  ( f `  suc  b )  \/  (
f `  b )  =  ( f `  suc  b ) ) )
2726ad2antll 709 . . . . . . . 8  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  A. b  e.  om  ( ( f `  b ) `' [ C.]  ( f `  suc  b )  \/  (
f `  b )  =  ( f `  suc  b ) ) )
28 porpss 6281 . . . . . . . . . 10  |- [ C.]  Po  ran  f
29 cnvpo 5213 . . . . . . . . . 10  |-  ( [ C.]  Po  ran  f  <->  `' [ C.]  Po  ran  f )
3028, 29mpbi 199 . . . . . . . . 9  |-  `' [ C.]  Po  ran  f
3130a1i 10 . . . . . . . 8  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  `' [ C.]  Po  ran  f )
32 sornom 7903 . . . . . . . 8  |-  ( ( f  Fn  om  /\  A. b  e.  om  (
( f `  b
) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) )  /\  `' [ C.] 
Po  ran  f )  ->  `' [ C.]  Or  ran  f
)
3315, 27, 31, 32syl3anc 1182 . . . . . . 7  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  `' [ C.]  Or  ran  f )
34 cnvso 5214 . . . . . . 7  |-  ( [ C.]  Or  ran  f  <->  `' [ C.]  Or  ran  f )
3533, 34sylibr 203 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  -> [ C.]  Or  ran  f )
36 fin2i2 7944 . . . . . 6  |-  ( ( ( A  e. FinII  /\  ran  f  C_  ~P A )  /\  ( ran  f  =/=  (/)  /\ [ C.]  Or  ran  f ) )  ->  |^| ran  f  e.  ran  f )
372, 4, 13, 35, 36syl22anc 1183 . . . . 5  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  |^| ran  f  e. 
ran  f )
3837expr 598 . . . 4  |-  ( ( A  e. FinII  /\  f : om
--> ~P A )  -> 
( A. b  e. 
om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) )
391, 38sylan2 460 . . 3  |-  ( ( A  e. FinII  /\  f  e.  ( ~P A  ^m  om ) )  ->  ( A. b  e.  om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) )
4039ralrimiva 2626 . 2  |-  ( A  e. FinII  ->  A. f  e.  ( ~P A  ^m  om ) ( A. b  e.  om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) )
41 fin23lem40.f . . 3  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
4241isfin3ds 7955 . 2  |-  ( A  e. FinII  ->  ( A  e.  F  <->  A. f  e.  ( ~P A  ^m  om ) ( A. b  e.  om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) ) )
4340, 42mpbird 223 1  |-  ( A  e. FinII  ->  A  e.  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543    C_ wss 3152    C. wpss 3153   (/)c0 3455   ~Pcpw 3625   |^|cint 3862   class class class wbr 4023    Po wpo 4312    Or wor 4313   suc csuc 4394   omcom 4656   `'ccnv 4688   dom cdm 4689   ran crn 4690    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   [ C.] crpss 6276    ^m cmap 6772  FinIIcfin2 7905
This theorem is referenced by:  fin23  8015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rpss 6277  df-map 6774  df-fin2 7912
  Copyright terms: Public domain W3C validator