MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem7 Structured version   Unicode version

Theorem fin23lem7 8201
Description: Lemma for isfin2-2 8204. The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin23lem7  |-  ( ( A  e.  V  /\  B  C_  ~P A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  ( A  \  x )  e.  B }  =/=  (/) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem fin23lem7
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 n0 3639 . . . 4  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
2 difss 3476 . . . . . . . 8  |-  ( A 
\  y )  C_  A
3 elpw2g 4366 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( A  \  y
)  e.  ~P A  <->  ( A  \  y ) 
C_  A ) )
43ad2antrr 708 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  (
( A  \  y
)  e.  ~P A  <->  ( A  \  y ) 
C_  A ) )
52, 4mpbiri 226 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  ( A  \  y )  e. 
~P A )
6 simpr 449 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  C_  ~P A )  ->  B  C_  ~P A )
76sselda 3350 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  y  e.  ~P A )
87elpwid 3810 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  y  C_  A )
9 dfss4 3577 . . . . . . . . 9  |-  ( y 
C_  A  <->  ( A  \  ( A  \  y
) )  =  y )
108, 9sylib 190 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  ( A  \  ( A  \ 
y ) )  =  y )
11 simpr 449 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  y  e.  B )
1210, 11eqeltrd 2512 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  ( A  \  ( A  \ 
y ) )  e.  B )
13 difeq2 3461 . . . . . . . . 9  |-  ( x  =  ( A  \ 
y )  ->  ( A  \  x )  =  ( A  \  ( A  \  y ) ) )
1413eleq1d 2504 . . . . . . . 8  |-  ( x  =  ( A  \ 
y )  ->  (
( A  \  x
)  e.  B  <->  ( A  \  ( A  \  y
) )  e.  B
) )
1514rspcev 3054 . . . . . . 7  |-  ( ( ( A  \  y
)  e.  ~P A  /\  ( A  \  ( A  \  y ) )  e.  B )  ->  E. x  e.  ~P  A ( A  \  x )  e.  B
)
165, 12, 15syl2anc 644 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  C_  ~P A
)  /\  y  e.  B )  ->  E. x  e.  ~P  A ( A 
\  x )  e.  B )
1716ex 425 . . . . 5  |-  ( ( A  e.  V  /\  B  C_  ~P A )  ->  ( y  e.  B  ->  E. x  e.  ~P  A ( A 
\  x )  e.  B ) )
1817exlimdv 1647 . . . 4  |-  ( ( A  e.  V  /\  B  C_  ~P A )  ->  ( E. y 
y  e.  B  ->  E. x  e.  ~P  A ( A  \  x )  e.  B
) )
191, 18syl5bi 210 . . 3  |-  ( ( A  e.  V  /\  B  C_  ~P A )  ->  ( B  =/=  (/)  ->  E. x  e.  ~P  A ( A  \  x )  e.  B
) )
20193impia 1151 . 2  |-  ( ( A  e.  V  /\  B  C_  ~P A  /\  B  =/=  (/) )  ->  E. x  e.  ~P  A ( A 
\  x )  e.  B )
21 rabn0 3649 . 2  |-  ( { x  e.  ~P A  |  ( A  \  x )  e.  B }  =/=  (/)  <->  E. x  e.  ~P  A ( A  \  x )  e.  B
)
2220, 21sylibr 205 1  |-  ( ( A  e.  V  /\  B  C_  ~P A  /\  B  =/=  (/) )  ->  { x  e.  ~P A  |  ( A  \  x )  e.  B }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711    \ cdif 3319    C_ wss 3322   (/)c0 3630   ~Pcpw 3801
This theorem is referenced by:  fin2i2  8203  isfin2-2  8204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-nul 3631  df-pw 3803
  Copyright terms: Public domain W3C validator