MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2inf Unicode version

Theorem fin2inf 7120
Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless 
om exists. (Contributed by NM, 13-Nov-2003.)
Assertion
Ref Expression
fin2inf  |-  ( A 
~<  om  ->  om  e.  _V )

Proof of Theorem fin2inf
StepHypRef Expression
1 relsdom 6870 . 2  |-  Rel  ~<
21brrelex2i 4730 1  |-  ( A 
~<  om  ->  om  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   _Vcvv 2788   class class class wbr 4023   omcom 4656    ~< csdm 6862
This theorem is referenced by:  unfi2  7126  unifi2  7146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-dom 6865  df-sdom 6866
  Copyright terms: Public domain W3C validator