MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin45 Structured version   Unicode version

Theorem fin45 8273
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
fin45  |-  ( A  e. FinIV  ->  A  e. FinV )

Proof of Theorem fin45
StepHypRef Expression
1 isfin4-3 8196 . . 3  |-  ( A  e. FinIV  <-> 
A  ~<  ( A  +c  1o ) )
2 simpl 445 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  A  =/=  (/) )
3 relen 7115 . . . . . . . . . . . 12  |-  Rel  ~~
43brrelexi 4919 . . . . . . . . . . 11  |-  ( A 
~~  ( A  +c  A )  ->  A  e.  _V )
54adantl 454 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  A  e.  _V )
6 0sdomg 7237 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
75, 6syl 16 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
82, 7mpbird 225 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  (/)  ~<  A )
9 0sdom1dom 7307 . . . . . . . 8  |-  ( (/)  ~<  A 
<->  1o  ~<_  A )
108, 9sylib 190 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  1o  ~<_  A )
11 cdadom2 8068 . . . . . . 7  |-  ( 1o  ~<_  A  ->  ( A  +c  1o )  ~<_  ( A  +c  A ) )
1210, 11syl 16 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  ( A  +c  1o )  ~<_  ( A  +c  A ) )
13 domen2 7251 . . . . . . 7  |-  ( A 
~~  ( A  +c  A )  ->  (
( A  +c  1o )  ~<_  A  <->  ( A  +c  1o )  ~<_  ( A  +c  A ) ) )
1413adantl 454 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  (
( A  +c  1o )  ~<_  A  <->  ( A  +c  1o )  ~<_  ( A  +c  A ) ) )
1512, 14mpbird 225 . . . . 5  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  ( A  +c  1o )  ~<_  A )
16 domnsym 7234 . . . . 5  |-  ( ( A  +c  1o )  ~<_  A  ->  -.  A  ~<  ( A  +c  1o ) )
1715, 16syl 16 . . . 4  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  -.  A  ~<  ( A  +c  1o ) )
1817con2i 115 . . 3  |-  ( A 
~<  ( A  +c  1o )  ->  -.  ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) ) )
191, 18sylbi 189 . 2  |-  ( A  e. FinIV  ->  -.  ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) ) )
20 isfin5-2 8272 . 2  |-  ( A  e. FinIV  ->  ( A  e. FinV  <->  -.  ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) ) ) )
2119, 20mpbird 225 1  |-  ( A  e. FinIV  ->  A  e. FinV )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726    =/= wne 2600   _Vcvv 2957   (/)c0 3629   class class class wbr 4213  (class class class)co 6082   1oc1o 6718    ~~ cen 7107    ~<_ cdom 7108    ~< csdm 7109    +c ccda 8048  FinIVcfin4 8161  FinVcfin5 8163
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-recs 6634  df-rdg 6669  df-1o 6725  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-cda 8049  df-fin4 8168  df-fin5 8170
  Copyright terms: Public domain W3C validator