MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4en1 Unicode version

Theorem fin4en1 7935
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin4en1  |-  ( A 
~~  B  ->  ( A  e. FinIV  ->  B  e. FinIV ) )

Proof of Theorem fin4en1
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 6910 . 2  |-  ( A 
~~  B  ->  B  ~~  A )
2 bren 6871 . . . 4  |-  ( B 
~~  A  <->  E. f 
f : B -1-1-onto-> A )
3 simpr 447 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  ->  x  C.  B )
4 f1of1 5471 . . . . . . . . . . . . 13  |-  ( f : B -1-1-onto-> A  ->  f : B -1-1-> A )
5 pssss 3271 . . . . . . . . . . . . . 14  |-  ( x 
C.  B  ->  x  C_  B )
6 ssid 3197 . . . . . . . . . . . . . 14  |-  B  C_  B
75, 6jctir 524 . . . . . . . . . . . . 13  |-  ( x 
C.  B  ->  (
x  C_  B  /\  B  C_  B ) )
8 f1imapss 5790 . . . . . . . . . . . . 13  |-  ( ( f : B -1-1-> A  /\  ( x  C_  B  /\  B  C_  B ) )  ->  ( (
f " x ) 
C.  ( f " B )  <->  x  C.  B ) )
94, 7, 8syl2an 463 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( ( f "
x )  C.  (
f " B )  <-> 
x  C.  B )
)
103, 9mpbird 223 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " x
)  C.  ( f " B ) )
11 imadmrn 5024 . . . . . . . . . . . . . 14  |-  ( f
" dom  f )  =  ran  f
12 f1odm 5476 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  ->  dom  f  =  B )
1312imaeq2d 5012 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ( f " dom  f )  =  ( f " B
) )
14 dff1o5 5481 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  <->  ( f : B -1-1-> A  /\  ran  f  =  A ) )
1514simprbi 450 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ran  f  =  A )
1611, 13, 153eqtr3a 2339 . . . . . . . . . . . . 13  |-  ( f : B -1-1-onto-> A  ->  ( f " B )  =  A )
1716adantr 451 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " B
)  =  A )
1817psseq2d 3269 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( ( f "
x )  C.  (
f " B )  <-> 
( f " x
)  C.  A )
)
1910, 18mpbid 201 . . . . . . . . . 10  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " x
)  C.  A )
2019adantrr 697 . . . . . . . . 9  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  C.  A
)
21 vex 2791 . . . . . . . . . . . . . 14  |-  x  e. 
_V
2221f1imaen 6923 . . . . . . . . . . . . 13  |-  ( ( f : B -1-1-> A  /\  x  C_  B )  ->  ( f "
x )  ~~  x
)
234, 5, 22syl2an 463 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " x
)  ~~  x )
2423adantrr 697 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  ~~  x
)
25 simprr 733 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  x  ~~  B
)
26 entr 6913 . . . . . . . . . . 11  |-  ( ( ( f " x
)  ~~  x  /\  x  ~~  B )  -> 
( f " x
)  ~~  B )
2724, 25, 26syl2anc 642 . . . . . . . . . 10  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  ~~  B
)
28 vex 2791 . . . . . . . . . . . 12  |-  f  e. 
_V
29 f1oen3g 6877 . . . . . . . . . . . 12  |-  ( ( f  e.  _V  /\  f : B -1-1-onto-> A )  ->  B  ~~  A )
3028, 29mpan 651 . . . . . . . . . . 11  |-  ( f : B -1-1-onto-> A  ->  B  ~~  A )
3130adantr 451 . . . . . . . . . 10  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  B  ~~  A
)
32 entr 6913 . . . . . . . . . 10  |-  ( ( ( f " x
)  ~~  B  /\  B  ~~  A )  -> 
( f " x
)  ~~  A )
3327, 31, 32syl2anc 642 . . . . . . . . 9  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  ~~  A
)
34 fin4i 7924 . . . . . . . . 9  |-  ( ( ( f " x
)  C.  A  /\  ( f " x
)  ~~  A )  ->  -.  A  e. FinIV )
3520, 33, 34syl2anc 642 . . . . . . . 8  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  -.  A  e. FinIV )
3635ex 423 . . . . . . 7  |-  ( f : B -1-1-onto-> A  ->  ( (
x  C.  B  /\  x  ~~  B )  ->  -.  A  e. FinIV ) )
3736exlimdv 1664 . . . . . 6  |-  ( f : B -1-1-onto-> A  ->  ( E. x ( x  C.  B  /\  x  ~~  B
)  ->  -.  A  e. FinIV
) )
3837con2d 107 . . . . 5  |-  ( f : B -1-1-onto-> A  ->  ( A  e. FinIV  ->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
3938exlimiv 1666 . . . 4  |-  ( E. f  f : B -1-1-onto-> A  ->  ( A  e. FinIV  ->  -.  E. x ( x  C.  B  /\  x  ~~  B
) ) )
402, 39sylbi 187 . . 3  |-  ( B 
~~  A  ->  ( A  e. FinIV  ->  -.  E. x
( x  C.  B  /\  x  ~~  B ) ) )
41 relen 6868 . . . . 5  |-  Rel  ~~
4241brrelexi 4729 . . . 4  |-  ( B 
~~  A  ->  B  e.  _V )
43 isfin4 7923 . . . 4  |-  ( B  e.  _V  ->  ( B  e. FinIV 
<->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
4442, 43syl 15 . . 3  |-  ( B 
~~  A  ->  ( B  e. FinIV 
<->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
4540, 44sylibrd 225 . 2  |-  ( B 
~~  A  ->  ( A  e. FinIV  ->  B  e. FinIV ) )
461, 45syl 15 1  |-  ( A 
~~  B  ->  ( A  e. FinIV  ->  B  e. FinIV ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152    C. wpss 3153   class class class wbr 4023   dom cdm 4689   ran crn 4690   "cima 4692   -1-1->wf1 5252   -1-1-onto->wf1o 5254    ~~ cen 6860  FinIVcfin4 7906
This theorem is referenced by:  domfin4  7937  isfin4-3  7941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-fin4 7913
  Copyright terms: Public domain W3C validator