MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin67 Unicode version

Theorem fin67 8037
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin67  |-  ( A  e. FinVI  ->  A  e. FinVII )

Proof of Theorem fin67
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 isfin6 7942 . 2  |-  ( A  e. FinVI  <-> 
( A  ~<  2o  \/  A  ~<  ( A  X.  A ) ) )
2 2onn 6654 . . . . . 6  |-  2o  e.  om
3 ssid 3210 . . . . . 6  |-  2o  C_  2o
4 ssnnfi 7098 . . . . . 6  |-  ( ( 2o  e.  om  /\  2o  C_  2o )  ->  2o  e.  Fin )
52, 3, 4mp2an 653 . . . . 5  |-  2o  e.  Fin
6 sdomdom 6905 . . . . 5  |-  ( A 
~<  2o  ->  A  ~<_  2o )
7 domfi 7100 . . . . 5  |-  ( ( 2o  e.  Fin  /\  A  ~<_  2o )  ->  A  e.  Fin )
85, 6, 7sylancr 644 . . . 4  |-  ( A 
~<  2o  ->  A  e.  Fin )
9 fin17 8036 . . . 4  |-  ( A  e.  Fin  ->  A  e. FinVII )
108, 9syl 15 . . 3  |-  ( A 
~<  2o  ->  A  e. FinVII )
11 sdomnen 6906 . . . . 5  |-  ( A 
~<  ( A  X.  A
)  ->  -.  A  ~~  ( A  X.  A
) )
12 eldifi 3311 . . . . . . . . 9  |-  ( b  e.  ( On  \  om )  ->  b  e.  On )
13 ensym 6926 . . . . . . . . 9  |-  ( A 
~~  b  ->  b  ~~  A )
14 isnumi 7595 . . . . . . . . 9  |-  ( ( b  e.  On  /\  b  ~~  A )  ->  A  e.  dom  card )
1512, 13, 14syl2an 463 . . . . . . . 8  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  ->  A  e.  dom  card )
16 vex 2804 . . . . . . . . . . 11  |-  b  e. 
_V
17 eldif 3175 . . . . . . . . . . . 12  |-  ( b  e.  ( On  \  om )  <->  ( b  e.  On  /\  -.  b  e.  om ) )
18 ordom 4681 . . . . . . . . . . . . . 14  |-  Ord  om
19 eloni 4418 . . . . . . . . . . . . . 14  |-  ( b  e.  On  ->  Ord  b )
20 ordtri1 4441 . . . . . . . . . . . . . 14  |-  ( ( Ord  om  /\  Ord  b )  ->  ( om  C_  b  <->  -.  b  e.  om ) )
2118, 19, 20sylancr 644 . . . . . . . . . . . . 13  |-  ( b  e.  On  ->  ( om  C_  b  <->  -.  b  e.  om ) )
2221biimpar 471 . . . . . . . . . . . 12  |-  ( ( b  e.  On  /\  -.  b  e.  om )  ->  om  C_  b )
2317, 22sylbi 187 . . . . . . . . . . 11  |-  ( b  e.  ( On  \  om )  ->  om  C_  b
)
24 ssdomg 6923 . . . . . . . . . . 11  |-  ( b  e.  _V  ->  ( om  C_  b  ->  om  ~<_  b ) )
2516, 23, 24mpsyl 59 . . . . . . . . . 10  |-  ( b  e.  ( On  \  om )  ->  om  ~<_  b )
26 domen2 7020 . . . . . . . . . 10  |-  ( A 
~~  b  ->  ( om 
~<_  A  <->  om  ~<_  b ) )
2725, 26syl5ibr 212 . . . . . . . . 9  |-  ( A 
~~  b  ->  (
b  e.  ( On 
\  om )  ->  om 
~<_  A ) )
2827impcom 419 . . . . . . . 8  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  ->  om 
~<_  A )
29 infxpidm2 7660 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
3015, 28, 29syl2anc 642 . . . . . . 7  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  -> 
( A  X.  A
)  ~~  A )
31 ensym 6926 . . . . . . 7  |-  ( ( A  X.  A ) 
~~  A  ->  A  ~~  ( A  X.  A
) )
3230, 31syl 15 . . . . . 6  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  ->  A  ~~  ( A  X.  A ) )
3332rexlimiva 2675 . . . . 5  |-  ( E. b  e.  ( On 
\  om ) A 
~~  b  ->  A  ~~  ( A  X.  A
) )
3411, 33nsyl 113 . . . 4  |-  ( A 
~<  ( A  X.  A
)  ->  -.  E. b  e.  ( On  \  om ) A  ~~  b )
35 relsdom 6886 . . . . . 6  |-  Rel  ~<
3635brrelexi 4745 . . . . 5  |-  ( A 
~<  ( A  X.  A
)  ->  A  e.  _V )
37 isfin7 7943 . . . . 5  |-  ( A  e.  _V  ->  ( A  e. FinVII 
<->  -.  E. b  e.  ( On  \  om ) A  ~~  b ) )
3836, 37syl 15 . . . 4  |-  ( A 
~<  ( A  X.  A
)  ->  ( A  e. FinVII  <->  -. 
E. b  e.  ( On  \  om ) A  ~~  b ) )
3934, 38mpbird 223 . . 3  |-  ( A 
~<  ( A  X.  A
)  ->  A  e. FinVII )
4010, 39jaoi 368 . 2  |-  ( ( A  ~<  2o  \/  A  ~<  ( A  X.  A ) )  ->  A  e. FinVII )
411, 40sylbi 187 1  |-  ( A  e. FinVI  ->  A  e. FinVII )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    e. wcel 1696   E.wrex 2557   _Vcvv 2801    \ cdif 3162    C_ wss 3165   class class class wbr 4039   Ord word 4407   Oncon0 4408   omcom 4672    X. cxp 4703   dom cdm 4705   2oc2o 6489    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879   cardccrd 7584  FinVIcfin6 7925  FinVIIcfin7 7926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-fin6 7932  df-fin7 7933
  Copyright terms: Public domain W3C validator