MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard Unicode version

Theorem findcard 7285
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
findcard.2  |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch )
)
findcard.3  |-  ( x  =  y  ->  ( ph 
<->  th ) )
findcard.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findcard.5  |-  ps
findcard.6  |-  ( y  e.  Fin  ->  ( A. z  e.  y  ch  ->  th ) )
Assertion
Ref Expression
findcard  |-  ( A  e.  Fin  ->  ta )
Distinct variable groups:    x, y,
z, A    ps, x    ch, x    th, x    ta, x    ph, y, z
Allowed substitution hints:    ph( x)    ps( y, z)    ch( y, z)    th( y, z)    ta( y,
z)

Proof of Theorem findcard
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2 isfi 7069 . . 3  |-  ( x  e.  Fin  <->  E. w  e.  om  x  ~~  w
)
3 breq2 4159 . . . . . . . 8  |-  ( w  =  (/)  ->  ( x 
~~  w  <->  x  ~~  (/) ) )
43imbi1d 309 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( x  ~~  w  ->  ph )  <->  ( x  ~~  (/) 
->  ph ) ) )
54albidv 1632 . . . . . 6  |-  ( w  =  (/)  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  (/)  ->  ph )
) )
6 breq2 4159 . . . . . . . 8  |-  ( w  =  v  ->  (
x  ~~  w  <->  x  ~~  v ) )
76imbi1d 309 . . . . . . 7  |-  ( w  =  v  ->  (
( x  ~~  w  ->  ph )  <->  ( x  ~~  v  ->  ph )
) )
87albidv 1632 . . . . . 6  |-  ( w  =  v  ->  ( A. x ( x  ~~  w  ->  ph )  <->  A. x
( x  ~~  v  ->  ph ) ) )
9 breq2 4159 . . . . . . . 8  |-  ( w  =  suc  v  -> 
( x  ~~  w  <->  x 
~~  suc  v )
)
109imbi1d 309 . . . . . . 7  |-  ( w  =  suc  v  -> 
( ( x  ~~  w  ->  ph )  <->  ( x  ~~  suc  v  ->  ph )
) )
1110albidv 1632 . . . . . 6  |-  ( w  =  suc  v  -> 
( A. x ( x  ~~  w  ->  ph )  <->  A. x ( x 
~~  suc  v  ->  ph ) ) )
12 en0 7108 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
13 findcard.5 . . . . . . . . 9  |-  ps
14 findcard.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
1513, 14mpbiri 225 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1612, 15sylbi 188 . . . . . . 7  |-  ( x 
~~  (/)  ->  ph )
1716ax-gen 1552 . . . . . 6  |-  A. x
( x  ~~  (/)  ->  ph )
18 peano2 4807 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  suc  v  e.  om )
19 breq2 4159 . . . . . . . . . . . . . 14  |-  ( w  =  suc  v  -> 
( y  ~~  w  <->  y 
~~  suc  v )
)
2019rspcev 2997 . . . . . . . . . . . . 13  |-  ( ( suc  v  e.  om  /\  y  ~~  suc  v
)  ->  E. w  e.  om  y  ~~  w
)
2118, 20sylan 458 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  E. w  e.  om  y  ~~  w )
22 isfi 7069 . . . . . . . . . . . 12  |-  ( y  e.  Fin  <->  E. w  e.  om  y  ~~  w
)
2321, 22sylibr 204 . . . . . . . . . . 11  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  y  e.  Fin )
24233adant2 976 . . . . . . . . . 10  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  -> 
y  e.  Fin )
25 dif1en 7279 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  om  /\  y  ~~  suc  v  /\  z  e.  y )  ->  ( y  \  {
z } )  ~~  v )
26253expa 1153 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  z  e.  y )  ->  (
y  \  { z } )  ~~  v
)
27 vex 2904 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
28 difexg 4294 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  _V  ->  (
y  \  { z } )  e.  _V )
2927, 28ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( y 
\  { z } )  e.  _V
30 breq1 4158 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  \  { z } )  ->  ( x  ~~  v 
<->  ( y  \  {
z } )  ~~  v ) )
31 findcard.2 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( y  \  { z } )  ->  ( ph  <->  ch )
)
3230, 31imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  \  { z } )  ->  ( ( x 
~~  v  ->  ph )  <->  ( ( y  \  {
z } )  ~~  v  ->  ch ) ) )
3329, 32spcv 2987 . . . . . . . . . . . . . . 15  |-  ( A. x ( x  ~~  v  ->  ph )  ->  (
( y  \  {
z } )  ~~  v  ->  ch ) )
3426, 33syl5com 28 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  z  e.  y )  ->  ( A. x ( x  ~~  v  ->  ph )  ->  ch ) )
3534ralrimdva 2741 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  y  ~~  suc  v )  ->  ( A. x
( x  ~~  v  ->  ph )  ->  A. z  e.  y  ch )
)
3635imp 419 . . . . . . . . . . . 12  |-  ( ( ( v  e.  om  /\  y  ~~  suc  v
)  /\  A. x
( x  ~~  v  ->  ph ) )  ->  A. z  e.  y  ch )
3736an32s 780 . . . . . . . . . . 11  |-  ( ( ( v  e.  om  /\ 
A. x ( x 
~~  v  ->  ph )
)  /\  y  ~~  suc  v )  ->  A. z  e.  y  ch )
38373impa 1148 . . . . . . . . . 10  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  ->  A. z  e.  y  ch )
39 findcard.6 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ( A. z  e.  y  ch  ->  th ) )
4024, 38, 39sylc 58 . . . . . . . . 9  |-  ( ( v  e.  om  /\  A. x ( x  ~~  v  ->  ph )  /\  y  ~~  suc  v )  ->  th )
41403exp 1152 . . . . . . . 8  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  (
y  ~~  suc  v  ->  th ) ) )
4241alrimdv 1640 . . . . . . 7  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. y
( y  ~~  suc  v  ->  th ) ) )
43 breq1 4158 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  ~~  suc  v  <->  y  ~~  suc  v ) )
44 findcard.3 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  th ) )
4543, 44imbi12d 312 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  ~~  suc  v  ->  ph )  <->  ( y  ~~  suc  v  ->  th )
) )
4645cbvalv 2038 . . . . . . 7  |-  ( A. x ( x  ~~  suc  v  ->  ph )  <->  A. y ( y  ~~  suc  v  ->  th )
)
4742, 46syl6ibr 219 . . . . . 6  |-  ( v  e.  om  ->  ( A. x ( x  ~~  v  ->  ph )  ->  A. x
( x  ~~  suc  v  ->  ph ) ) )
485, 8, 11, 17, 47finds1 4816 . . . . 5  |-  ( w  e.  om  ->  A. x
( x  ~~  w  ->  ph ) )
494819.21bi 1766 . . . 4  |-  ( w  e.  om  ->  (
x  ~~  w  ->  ph ) )
5049rexlimiv 2769 . . 3  |-  ( E. w  e.  om  x  ~~  w  ->  ph )
512, 50sylbi 188 . 2  |-  ( x  e.  Fin  ->  ph )
521, 51vtoclga 2962 1  |-  ( A  e.  Fin  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   _Vcvv 2901    \ cdif 3262   (/)c0 3573   {csn 3759   class class class wbr 4155   suc csuc 4526   omcom 4787    ~~ cen 7044   Fincfn 7047
This theorem is referenced by:  xpfi  7316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-1o 6662  df-er 6843  df-en 7048  df-fin 7051
  Copyright terms: Public domain W3C validator