Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds Unicode version

Theorem finds 4682
 Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1
finds.2
finds.3
finds.4
finds.5
finds.6
Assertion
Ref Expression
finds
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5
2 0ex 4150 . . . . . 6
3 finds.1 . . . . . 6
42, 3elab 2914 . . . . 5
51, 4mpbir 200 . . . 4
6 finds.6 . . . . . 6
7 vex 2791 . . . . . . 7
8 finds.2 . . . . . . 7
97, 8elab 2914 . . . . . 6
107sucex 4602 . . . . . . 7
11 finds.3 . . . . . . 7
1210, 11elab 2914 . . . . . 6
136, 9, 123imtr4g 261 . . . . 5
1413rgen 2608 . . . 4
15 peano5 4679 . . . 4
165, 14, 15mp2an 653 . . 3
1716sseli 3176 . 2
18 finds.4 . . 3
1918elabg 2915 . 2
2017, 19mpbid 201 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wceq 1623   wcel 1684  cab 2269  wral 2543   wss 3152  c0 3455   csuc 4394  com 4656 This theorem is referenced by:  findsg  4683  findes  4686  seqomlem1  6462  nna0r  6607  nnm0r  6608  nnawordi  6619  nneob  6650  nneneq  7044  pssnn  7081  inf3lem1  7329  inf3lem2  7330  cantnfval2  7370  cantnfp1lem3  7382  r1fin  7445  ackbij1lem14  7859  ackbij1lem16  7861  ackbij1  7864  ackbij2lem2  7866  ackbij2lem3  7867  infpssrlem4  7932  fin23lem14  7959  fin23lem34  7972  itunitc1  8046  ituniiun  8048  om2uzuzi  11012  om2uzlti  11013  om2uzrdg  11019  uzrdgxfr  11029  hashgadd  11359  mreexexd  13550  trpredmintr  24234  findfvcl  24891 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
 Copyright terms: Public domain W3C validator