MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Unicode version

Theorem finds2 4684
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds2.4  |-  ( ta 
->  ps )
finds2.5  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
finds2  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5  |-  ( ta 
->  ps )
2 0ex 4150 . . . . . 6  |-  (/)  e.  _V
3 finds2.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 307 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4elab 2914 . . . . 5  |-  ( (/)  e.  { x  |  ( ta  ->  ph ) }  <-> 
( ta  ->  ps ) )
61, 5mpbir 200 . . . 4  |-  (/)  e.  {
x  |  ( ta 
->  ph ) }
7 finds2.5 . . . . . . 7  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
87a2d 23 . . . . . 6  |-  ( y  e.  om  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
9 vex 2791 . . . . . . 7  |-  y  e. 
_V
10 finds2.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1110imbi2d 307 . . . . . . 7  |-  ( x  =  y  ->  (
( ta  ->  ph )  <->  ( ta  ->  ch )
) )
129, 11elab 2914 . . . . . 6  |-  ( y  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ch ) )
139sucex 4602 . . . . . . 7  |-  suc  y  e.  _V
14 finds2.3 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1514imbi2d 307 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
1613, 15elab 2914 . . . . . 6  |-  ( suc  y  e.  { x  |  ( ta  ->  ph ) }  <->  ( ta  ->  th ) )
178, 12, 163imtr4g 261 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )
1817rgen 2608 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta 
->  ph ) } )
19 peano5 4679 . . . 4  |-  ( (
(/)  e.  { x  |  ( ta  ->  ph ) }  /\  A. y  e.  om  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )  ->  om  C_  { x  |  ( ta  ->  ph ) } )
206, 18, 19mp2an 653 . . 3  |-  om  C_  { x  |  ( ta  ->  ph ) }
2120sseli 3176 . 2  |-  ( x  e.  om  ->  x  e.  { x  |  ( ta  ->  ph ) } )
22 abid 2271 . 2  |-  ( x  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ph )
)
2321, 22sylib 188 1  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543    C_ wss 3152   (/)c0 3455   suc csuc 4394   omcom 4656
This theorem is referenced by:  finds1  4685  onnseq  6361  nnacl  6609  nnmcl  6610  nnecl  6611  nnacom  6615  nnaass  6620  nndi  6621  nnmass  6622  nnmsucr  6623  nnmcom  6624  nnmordi  6629  omsmolem  6651  isinf  7076  unblem2  7110  fiint  7133  dffi3  7184  card2inf  7269  cantnfle  7372  cantnflt  7373  cantnflem1  7391  cnfcom  7403  trcl  7410  fseqenlem1  7651  infpssrlem3  7931  fin23lem26  7951  axdc3lem2  8077  axdc4lem  8081  axdclem2  8147  wunr1om  8341  wuncval2  8369  tskr1om  8389  grothomex  8451  peano5nni  9749  neibastop2lem  26309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
  Copyright terms: Public domain W3C validator