MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findsg Structured version   Unicode version

Theorem findsg 4864
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. The basis of this version is an arbitrary natural number  B instead of zero. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
findsg.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
findsg.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
findsg.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
findsg.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findsg.5  |-  ( B  e.  om  ->  ps )
findsg.6  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  B  C_  y )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
findsg  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ta )
Distinct variable groups:    x, A    x, y, B    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem findsg
StepHypRef Expression
1 sseq2 3362 . . . . . . 7  |-  ( x  =  (/)  ->  ( B 
C_  x  <->  B  C_  (/) ) )
21adantl 453 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( B  C_  x  <->  B  C_  (/) ) )
3 eqeq2 2444 . . . . . . . 8  |-  ( B  =  (/)  ->  ( x  =  B  <->  x  =  (/) ) )
4 findsg.1 . . . . . . . 8  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
53, 4syl6bir 221 . . . . . . 7  |-  ( B  =  (/)  ->  ( x  =  (/)  ->  ( ph  <->  ps ) ) )
65imp 419 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( ph 
<->  ps ) )
72, 6imbi12d 312 . . . . 5  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
81imbi1d 309 . . . . . 6  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ph ) ) )
9 ss0 3650 . . . . . . . . 9  |-  ( B 
C_  (/)  ->  B  =  (/) )
109con3i 129 . . . . . . . 8  |-  ( -.  B  =  (/)  ->  -.  B  C_  (/) )
1110pm2.21d 100 . . . . . . 7  |-  ( -.  B  =  (/)  ->  ( B  C_  (/)  ->  ( ph  <->  ps ) ) )
1211pm5.74d 239 . . . . . 6  |-  ( -.  B  =  (/)  ->  (
( B  C_  (/)  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
138, 12sylan9bbr 682 . . . . 5  |-  ( ( -.  B  =  (/)  /\  x  =  (/) )  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
147, 13pm2.61ian 766 . . . 4  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ps ) ) )
1514imbi2d 308 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_  (/)  ->  ps ) ) ) )
16 sseq2 3362 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
17 findsg.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1816, 17imbi12d 312 . . . 4  |-  ( x  =  y  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  y  ->  ch )
) )
1918imbi2d 308 . . 3  |-  ( x  =  y  ->  (
( B  e.  om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_  y  ->  ch )
) ) )
20 sseq2 3362 . . . . 5  |-  ( x  =  suc  y  -> 
( B  C_  x  <->  B 
C_  suc  y )
)
21 findsg.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2220, 21imbi12d 312 . . . 4  |-  ( x  =  suc  y  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_ 
suc  y  ->  th )
) )
2322imbi2d 308 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e. 
om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_ 
suc  y  ->  th )
) ) )
24 sseq2 3362 . . . . 5  |-  ( x  =  A  ->  ( B  C_  x  <->  B  C_  A
) )
25 findsg.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2624, 25imbi12d 312 . . . 4  |-  ( x  =  A  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  A  ->  ta )
) )
2726imbi2d 308 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_  A  ->  ta )
) ) )
28 findsg.5 . . . 4  |-  ( B  e.  om  ->  ps )
2928a1d 23 . . 3  |-  ( B  e.  om  ->  ( B  C_  (/)  ->  ps )
)
30 vex 2951 . . . . . . . . . . . . . 14  |-  y  e. 
_V
3130sucex 4783 . . . . . . . . . . . . 13  |-  suc  y  e.  _V
3231eqvinc 3055 . . . . . . . . . . . 12  |-  ( suc  y  =  B  <->  E. x
( x  =  suc  y  /\  x  =  B ) )
3328, 4syl5ibr 213 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( B  e.  om  ->  ph ) )
3421biimpd 199 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( ph  ->  th )
)
3533, 34sylan9r 640 . . . . . . . . . . . . 13  |-  ( ( x  =  suc  y  /\  x  =  B
)  ->  ( B  e.  om  ->  th )
)
3635exlimiv 1644 . . . . . . . . . . . 12  |-  ( E. x ( x  =  suc  y  /\  x  =  B )  ->  ( B  e.  om  ->  th ) )
3732, 36sylbi 188 . . . . . . . . . . 11  |-  ( suc  y  =  B  -> 
( B  e.  om  ->  th ) )
3837eqcoms 2438 . . . . . . . . . 10  |-  ( B  =  suc  y  -> 
( B  e.  om  ->  th ) )
3938imim2i 14 . . . . . . . . 9  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( B  C_  suc  y  ->  ( B  e.  om  ->  th )
) )
4039a1d 23 . . . . . . . 8  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  ( B  e.  om  ->  th )
) ) )
4140com4r 82 . . . . . . 7  |-  ( B  e.  om  ->  (
( B  C_  suc  y  ->  B  =  suc  y )  ->  (
( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
4241adantl 453 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  suc  y  ->  B  =  suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
43 df-ne 2600 . . . . . . . . 9  |-  ( B  =/=  suc  y  <->  -.  B  =  suc  y )
4443anbi2i 676 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  ( B  C_  suc  y  /\  -.  B  =  suc  y ) )
45 annim 415 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  -.  B  =  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
4644, 45bitri 241 . . . . . . 7  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
47 nnon 4843 . . . . . . . . 9  |-  ( B  e.  om  ->  B  e.  On )
48 nnon 4843 . . . . . . . . 9  |-  ( y  e.  om  ->  y  e.  On )
49 onsssuc 4661 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  B  e.  suc  y ) )
50 suceloni 4785 . . . . . . . . . . 11  |-  ( y  e.  On  ->  suc  y  e.  On )
51 onelpss 4613 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  suc  y  e.  On )  ->  ( B  e. 
suc  y  <->  ( B  C_ 
suc  y  /\  B  =/=  suc  y ) ) )
5250, 51sylan2 461 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  suc  y 
<->  ( B  C_  suc  y  /\  B  =/=  suc  y ) ) )
5349, 52bitrd 245 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
5447, 48, 53syl2anr 465 . . . . . . . 8  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
55 findsg.6 . . . . . . . . . . . 12  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  B  C_  y )  ->  ( ch  ->  th ) )
5655ex 424 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  ->  ( ch  ->  th )
) )
57 ax-1 5 . . . . . . . . . . 11  |-  ( th 
->  ( B  C_  suc  y  ->  th ) )
5856, 57syl8 67 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  ->  ( ch  ->  ( B  C_  suc  y  ->  th ) ) ) )
5958a2d 24 . . . . . . . . 9  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  y  ->  ( B  C_  suc  y  ->  th ) ) ) )
6059com23 74 . . . . . . . 8  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6154, 60sylbird 227 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  suc  y  /\  B  =/= 
suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6246, 61syl5bir 210 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( -.  ( B 
C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th )
) ) )
6342, 62pm2.61d 152 . . . . 5  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) )
6463ex 424 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
6564a2d 24 . . 3  |-  ( y  e.  om  ->  (
( B  e.  om  ->  ( B  C_  y  ->  ch ) )  -> 
( B  e.  om  ->  ( B  C_  suc  y  ->  th ) ) ) )
6615, 19, 23, 27, 29, 65finds 4863 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( B  C_  A  ->  ta ) ) )
6766imp31 422 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598    C_ wss 3312   (/)c0 3620   Oncon0 4573   suc csuc 4575   omcom 4837
This theorem is referenced by:  nnaordi  6853  inf3lem5  7579  ackbij2lem4  8114  sornom  8149  fin23lem15  8206  fin23lem36  8220  isf32lem1  8225  isf32lem2  8226  wunex2  8605  indpi  8776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838
  Copyright terms: Public domain W3C validator