MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findsg Unicode version

Theorem findsg 4812
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction hypothesis. The basis of this version is an arbitrary natural number  B instead of zero. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
findsg.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
findsg.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
findsg.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
findsg.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
findsg.5  |-  ( B  e.  om  ->  ps )
findsg.6  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  B  C_  y )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
findsg  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ta )
Distinct variable groups:    x, A    x, y, B    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem findsg
StepHypRef Expression
1 sseq2 3313 . . . . . . 7  |-  ( x  =  (/)  ->  ( B 
C_  x  <->  B  C_  (/) ) )
21adantl 453 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( B  C_  x  <->  B  C_  (/) ) )
3 eqeq2 2396 . . . . . . . 8  |-  ( B  =  (/)  ->  ( x  =  B  <->  x  =  (/) ) )
4 findsg.1 . . . . . . . 8  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
53, 4syl6bir 221 . . . . . . 7  |-  ( B  =  (/)  ->  ( x  =  (/)  ->  ( ph  <->  ps ) ) )
65imp 419 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( ph 
<->  ps ) )
72, 6imbi12d 312 . . . . 5  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
81imbi1d 309 . . . . . 6  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ph ) ) )
9 ss0 3601 . . . . . . . . 9  |-  ( B 
C_  (/)  ->  B  =  (/) )
109con3i 129 . . . . . . . 8  |-  ( -.  B  =  (/)  ->  -.  B  C_  (/) )
1110pm2.21d 100 . . . . . . 7  |-  ( -.  B  =  (/)  ->  ( B  C_  (/)  ->  ( ph  <->  ps ) ) )
1211pm5.74d 239 . . . . . 6  |-  ( -.  B  =  (/)  ->  (
( B  C_  (/)  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
138, 12sylan9bbr 682 . . . . 5  |-  ( ( -.  B  =  (/)  /\  x  =  (/) )  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
147, 13pm2.61ian 766 . . . 4  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ps ) ) )
1514imbi2d 308 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_  (/)  ->  ps ) ) ) )
16 sseq2 3313 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
17 findsg.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1816, 17imbi12d 312 . . . 4  |-  ( x  =  y  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  y  ->  ch )
) )
1918imbi2d 308 . . 3  |-  ( x  =  y  ->  (
( B  e.  om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_  y  ->  ch )
) ) )
20 sseq2 3313 . . . . 5  |-  ( x  =  suc  y  -> 
( B  C_  x  <->  B 
C_  suc  y )
)
21 findsg.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2220, 21imbi12d 312 . . . 4  |-  ( x  =  suc  y  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_ 
suc  y  ->  th )
) )
2322imbi2d 308 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e. 
om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_ 
suc  y  ->  th )
) ) )
24 sseq2 3313 . . . . 5  |-  ( x  =  A  ->  ( B  C_  x  <->  B  C_  A
) )
25 findsg.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2624, 25imbi12d 312 . . . 4  |-  ( x  =  A  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  A  ->  ta )
) )
2726imbi2d 308 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  om  ->  ( B  C_  A  ->  ta )
) ) )
28 findsg.5 . . . 4  |-  ( B  e.  om  ->  ps )
2928a1d 23 . . 3  |-  ( B  e.  om  ->  ( B  C_  (/)  ->  ps )
)
30 vex 2902 . . . . . . . . . . . . . 14  |-  y  e. 
_V
3130sucex 4731 . . . . . . . . . . . . 13  |-  suc  y  e.  _V
3231eqvinc 3006 . . . . . . . . . . . 12  |-  ( suc  y  =  B  <->  E. x
( x  =  suc  y  /\  x  =  B ) )
3328, 4syl5ibr 213 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( B  e.  om  ->  ph ) )
3421biimpd 199 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( ph  ->  th )
)
3533, 34sylan9r 640 . . . . . . . . . . . . 13  |-  ( ( x  =  suc  y  /\  x  =  B
)  ->  ( B  e.  om  ->  th )
)
3635exlimiv 1641 . . . . . . . . . . . 12  |-  ( E. x ( x  =  suc  y  /\  x  =  B )  ->  ( B  e.  om  ->  th ) )
3732, 36sylbi 188 . . . . . . . . . . 11  |-  ( suc  y  =  B  -> 
( B  e.  om  ->  th ) )
3837eqcoms 2390 . . . . . . . . . 10  |-  ( B  =  suc  y  -> 
( B  e.  om  ->  th ) )
3938imim2i 14 . . . . . . . . 9  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( B  C_  suc  y  ->  ( B  e.  om  ->  th )
) )
4039a1d 23 . . . . . . . 8  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  ( B  e.  om  ->  th )
) ) )
4140com4r 82 . . . . . . 7  |-  ( B  e.  om  ->  (
( B  C_  suc  y  ->  B  =  suc  y )  ->  (
( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
4241adantl 453 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  suc  y  ->  B  =  suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
43 df-ne 2552 . . . . . . . . 9  |-  ( B  =/=  suc  y  <->  -.  B  =  suc  y )
4443anbi2i 676 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  ( B  C_  suc  y  /\  -.  B  =  suc  y ) )
45 annim 415 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  -.  B  =  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
4644, 45bitri 241 . . . . . . 7  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
47 nnon 4791 . . . . . . . . 9  |-  ( B  e.  om  ->  B  e.  On )
48 nnon 4791 . . . . . . . . 9  |-  ( y  e.  om  ->  y  e.  On )
49 onsssuc 4609 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  B  e.  suc  y ) )
50 suceloni 4733 . . . . . . . . . . 11  |-  ( y  e.  On  ->  suc  y  e.  On )
51 onelpss 4562 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  suc  y  e.  On )  ->  ( B  e. 
suc  y  <->  ( B  C_ 
suc  y  /\  B  =/=  suc  y ) ) )
5250, 51sylan2 461 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  suc  y 
<->  ( B  C_  suc  y  /\  B  =/=  suc  y ) ) )
5349, 52bitrd 245 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
5447, 48, 53syl2anr 465 . . . . . . . 8  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
55 findsg.6 . . . . . . . . . . . 12  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  B  C_  y )  ->  ( ch  ->  th ) )
5655ex 424 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  ->  ( ch  ->  th )
) )
57 ax-1 5 . . . . . . . . . . 11  |-  ( th 
->  ( B  C_  suc  y  ->  th ) )
5856, 57syl8 67 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  ->  ( ch  ->  ( B  C_  suc  y  ->  th ) ) ) )
5958a2d 24 . . . . . . . . 9  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  y  ->  ( B  C_  suc  y  ->  th ) ) ) )
6059com23 74 . . . . . . . 8  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( B  C_  y  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6154, 60sylbird 227 . . . . . . 7  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  suc  y  /\  B  =/= 
suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6246, 61syl5bir 210 . . . . . 6  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( -.  ( B 
C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th )
) ) )
6342, 62pm2.61d 152 . . . . 5  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) )
6463ex 424 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
6564a2d 24 . . 3  |-  ( y  e.  om  ->  (
( B  e.  om  ->  ( B  C_  y  ->  ch ) )  -> 
( B  e.  om  ->  ( B  C_  suc  y  ->  th ) ) ) )
6615, 19, 23, 27, 29, 65finds 4811 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( B  C_  A  ->  ta ) ) )
6766imp31 422 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2550    C_ wss 3263   (/)c0 3571   Oncon0 4522   suc csuc 4524   omcom 4785
This theorem is referenced by:  nnaordi  6797  inf3lem5  7520  ackbij2lem4  8055  sornom  8090  fin23lem15  8147  fin23lem36  8161  isf32lem1  8166  isf32lem2  8167  wunex2  8546  indpi  8717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-tr 4244  df-eprel 4435  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786
  Copyright terms: Public domain W3C validator