MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqvlem Unicode version

Theorem fineqvlem 7077
Description: Lemma for fineqv 7078. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fineqvlem  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  om  ~<_  ~P ~P A )

Proof of Theorem fineqvlem
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4194 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
21adantr 451 . . 3  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ~P A  e. 
_V )
3 pwexg 4194 . . 3  |-  ( ~P A  e.  _V  ->  ~P ~P A  e.  _V )
42, 3syl 15 . 2  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ~P ~P A  e.  _V )
5 ssrab2 3258 . . . . 5  |-  { d  e.  ~P A  | 
d  ~~  b }  C_ 
~P A
6 elpw2g 4174 . . . . . 6  |-  ( ~P A  e.  _V  ->  ( { d  e.  ~P A  |  d  ~~  b }  e.  ~P ~P A  <->  { d  e.  ~P A  |  d  ~~  b }  C_  ~P A
) )
72, 6syl 15 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( { d  e.  ~P A  | 
d  ~~  b }  e.  ~P ~P A  <->  { d  e.  ~P A  |  d 
~~  b }  C_  ~P A ) )
85, 7mpbiri 224 . . . 4  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { d  e. 
~P A  |  d 
~~  b }  e.  ~P ~P A )
98a1d 22 . . 3  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( b  e. 
om  ->  { d  e. 
~P A  |  d 
~~  b }  e.  ~P ~P A ) )
10 isinf 7076 . . . . . . . . 9  |-  ( -.  A  e.  Fin  ->  A. b  e.  om  E. e ( e  C_  A  /\  e  ~~  b
) )
1110r19.21bi 2641 . . . . . . . 8  |-  ( ( -.  A  e.  Fin  /\  b  e.  om )  ->  E. e ( e 
C_  A  /\  e  ~~  b ) )
1211ad2ant2lr 728 . . . . . . 7  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  E. e
( e  C_  A  /\  e  ~~  b ) )
13 vex 2791 . . . . . . . . . . . 12  |-  e  e. 
_V
1413elpw 3631 . . . . . . . . . . 11  |-  ( e  e.  ~P A  <->  e  C_  A )
1514biimpri 197 . . . . . . . . . 10  |-  ( e 
C_  A  ->  e  e.  ~P A )
1615anim1i 551 . . . . . . . . 9  |-  ( ( e  C_  A  /\  e  ~~  b )  -> 
( e  e.  ~P A  /\  e  ~~  b
) )
17 breq1 4026 . . . . . . . . . 10  |-  ( d  =  e  ->  (
d  ~~  b  <->  e  ~~  b ) )
1817elrab 2923 . . . . . . . . 9  |-  ( e  e.  { d  e. 
~P A  |  d 
~~  b }  <->  ( e  e.  ~P A  /\  e  ~~  b ) )
1916, 18sylibr 203 . . . . . . . 8  |-  ( ( e  C_  A  /\  e  ~~  b )  -> 
e  e.  { d  e.  ~P A  | 
d  ~~  b }
)
2019eximi 1563 . . . . . . 7  |-  ( E. e ( e  C_  A  /\  e  ~~  b
)  ->  E. e 
e  e.  { d  e.  ~P A  | 
d  ~~  b }
)
2112, 20syl 15 . . . . . 6  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  E. e 
e  e.  { d  e.  ~P A  | 
d  ~~  b }
)
22 eleq2 2344 . . . . . . . . . . 11  |-  ( { d  e.  ~P A  |  d  ~~  b }  =  { d  e. 
~P A  |  d 
~~  c }  ->  ( e  e.  { d  e.  ~P A  | 
d  ~~  b }  <->  e  e.  { d  e. 
~P A  |  d 
~~  c } ) )
2322biimpcd 215 . . . . . . . . . 10  |-  ( e  e.  { d  e. 
~P A  |  d 
~~  b }  ->  ( { d  e.  ~P A  |  d  ~~  b }  =  {
d  e.  ~P A  |  d  ~~  c }  ->  e  e.  {
d  e.  ~P A  |  d  ~~  c } ) )
2423adantl 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  (
b  e.  om  /\  c  e.  om )
)  /\  e  e.  { d  e.  ~P A  |  d  ~~  b } )  ->  ( {
d  e.  ~P A  |  d  ~~  b }  =  { d  e. 
~P A  |  d 
~~  c }  ->  e  e.  { d  e. 
~P A  |  d 
~~  c } ) )
2518simprbi 450 . . . . . . . . . . . 12  |-  ( e  e.  { d  e. 
~P A  |  d 
~~  b }  ->  e 
~~  b )
26 breq1 4026 . . . . . . . . . . . . . 14  |-  ( d  =  e  ->  (
d  ~~  c  <->  e  ~~  c ) )
2726elrab 2923 . . . . . . . . . . . . 13  |-  ( e  e.  { d  e. 
~P A  |  d 
~~  c }  <->  ( e  e.  ~P A  /\  e  ~~  c ) )
2827simprbi 450 . . . . . . . . . . . 12  |-  ( e  e.  { d  e. 
~P A  |  d 
~~  c }  ->  e 
~~  c )
29 ensym 6910 . . . . . . . . . . . . 13  |-  ( e 
~~  b  ->  b  ~~  e )
30 entr 6913 . . . . . . . . . . . . 13  |-  ( ( b  ~~  e  /\  e  ~~  c )  -> 
b  ~~  c )
3129, 30sylan 457 . . . . . . . . . . . 12  |-  ( ( e  ~~  b  /\  e  ~~  c )  -> 
b  ~~  c )
3225, 28, 31syl2an 463 . . . . . . . . . . 11  |-  ( ( e  e.  { d  e.  ~P A  | 
d  ~~  b }  /\  e  e.  { d  e.  ~P A  | 
d  ~~  c }
)  ->  b  ~~  c )
3332ex 423 . . . . . . . . . 10  |-  ( e  e.  { d  e. 
~P A  |  d 
~~  b }  ->  ( e  e.  { d  e.  ~P A  | 
d  ~~  c }  ->  b  ~~  c ) )
3433adantl 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  (
b  e.  om  /\  c  e.  om )
)  /\  e  e.  { d  e.  ~P A  |  d  ~~  b } )  ->  ( e  e.  { d  e.  ~P A  |  d  ~~  c }  ->  b  ~~  c ) )
35 nneneq 7044 . . . . . . . . . . 11  |-  ( ( b  e.  om  /\  c  e.  om )  ->  ( b  ~~  c  <->  b  =  c ) )
3635biimpd 198 . . . . . . . . . 10  |-  ( ( b  e.  om  /\  c  e.  om )  ->  ( b  ~~  c  ->  b  =  c ) )
3736ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  (
b  e.  om  /\  c  e.  om )
)  /\  e  e.  { d  e.  ~P A  |  d  ~~  b } )  ->  ( b  ~~  c  ->  b  =  c ) )
3824, 34, 373syld 51 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  (
b  e.  om  /\  c  e.  om )
)  /\  e  e.  { d  e.  ~P A  |  d  ~~  b } )  ->  ( {
d  e.  ~P A  |  d  ~~  b }  =  { d  e. 
~P A  |  d 
~~  c }  ->  b  =  c ) )
3938ex 423 . . . . . . 7  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  (
e  e.  { d  e.  ~P A  | 
d  ~~  b }  ->  ( { d  e. 
~P A  |  d 
~~  b }  =  { d  e.  ~P A  |  d  ~~  c }  ->  b  =  c ) ) )
4039exlimdv 1664 . . . . . 6  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  ( E. e  e  e.  { d  e.  ~P A  |  d  ~~  b }  ->  ( { d  e.  ~P A  | 
d  ~~  b }  =  { d  e.  ~P A  |  d  ~~  c }  ->  b  =  c ) ) )
4121, 40mpd 14 . . . . 5  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  ( { d  e.  ~P A  |  d  ~~  b }  =  {
d  e.  ~P A  |  d  ~~  c }  ->  b  =  c ) )
42 breq2 4027 . . . . . 6  |-  ( b  =  c  ->  (
d  ~~  b  <->  d  ~~  c ) )
4342rabbidv 2780 . . . . 5  |-  ( b  =  c  ->  { d  e.  ~P A  | 
d  ~~  b }  =  { d  e.  ~P A  |  d  ~~  c } )
4441, 43impbid1 194 . . . 4  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  ( b  e. 
om  /\  c  e.  om ) )  ->  ( { d  e.  ~P A  |  d  ~~  b }  =  {
d  e.  ~P A  |  d  ~~  c }  <-> 
b  =  c ) )
4544ex 423 . . 3  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( ( b  e.  om  /\  c  e.  om )  ->  ( { d  e.  ~P A  |  d  ~~  b }  =  {
d  e.  ~P A  |  d  ~~  c }  <-> 
b  =  c ) ) )
469, 45dom2d 6902 . 2  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( ~P ~P A  e.  _V  ->  om  ~<_  ~P ~P A ) )
474, 46mpd 14 1  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  om  ~<_  ~P ~P A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023   omcom 4656    ~~ cen 6860    ~<_ cdom 6861   Fincfn 6863
This theorem is referenced by:  fineqv  7078  isfin1-2  8011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867
  Copyright terms: Public domain W3C validator