MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsschain Structured version   Unicode version

Theorem finsschain 7405
Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 18068 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
finsschain  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  ( B  e.  Fin  /\  B  C_ 
U. A ) )  ->  E. z  e.  A  B  C_  z )
Distinct variable groups:    z, A    z, B

Proof of Theorem finsschain
Dummy variables  a 
b  c  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3361 . . . . . 6  |-  ( a  =  (/)  ->  ( a 
C_  U. A  <->  (/)  C_  U. A
) )
2 sseq1 3361 . . . . . . 7  |-  ( a  =  (/)  ->  ( a 
C_  z  <->  (/)  C_  z
) )
32rexbidv 2718 . . . . . 6  |-  ( a  =  (/)  ->  ( E. z  e.  A  a 
C_  z  <->  E. z  e.  A  (/)  C_  z
) )
41, 3imbi12d 312 . . . . 5  |-  ( a  =  (/)  ->  ( ( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) ) )
54imbi2d 308 . . . 4  |-  ( a  =  (/)  ->  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  (
a  C_  U. A  ->  E. z  e.  A  a  C_  z ) )  <-> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) ) ) )
6 sseq1 3361 . . . . . 6  |-  ( a  =  b  ->  (
a  C_  U. A  <->  b  C_  U. A ) )
7 sseq1 3361 . . . . . . 7  |-  ( a  =  b  ->  (
a  C_  z  <->  b  C_  z ) )
87rexbidv 2718 . . . . . 6  |-  ( a  =  b  ->  ( E. z  e.  A  a  C_  z  <->  E. z  e.  A  b  C_  z ) )
96, 8imbi12d 312 . . . . 5  |-  ( a  =  b  ->  (
( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) ) )
109imbi2d 308 . . . 4  |-  ( a  =  b  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) ) ) )
11 sseq1 3361 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  U. A  <->  ( b  u. 
{ c } ) 
C_  U. A ) )
12 sseq1 3361 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  z 
<->  ( b  u.  {
c } )  C_  z ) )
1312rexbidv 2718 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( E. z  e.  A  a  C_  z 
<->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
1411, 13imbi12d 312 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a 
C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
1514imbi2d 308 . . . 4  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  (
a  C_  U. A  ->  E. z  e.  A  a  C_  z ) )  <-> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) ) )
16 sseq1 3361 . . . . . 6  |-  ( a  =  B  ->  (
a  C_  U. A  <->  B  C_  U. A
) )
17 sseq1 3361 . . . . . . 7  |-  ( a  =  B  ->  (
a  C_  z  <->  B  C_  z
) )
1817rexbidv 2718 . . . . . 6  |-  ( a  =  B  ->  ( E. z  e.  A  a  C_  z  <->  E. z  e.  A  B  C_  z
) )
1916, 18imbi12d 312 . . . . 5  |-  ( a  =  B  ->  (
( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
2019imbi2d 308 . . . 4  |-  ( a  =  B  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) ) )
21 0ss 3648 . . . . . . . 8  |-  (/)  C_  z
2221rgenw 2765 . . . . . . 7  |-  A. z  e.  A  (/)  C_  z
23 r19.2z 3709 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. z  e.  A  (/)  C_  z
)  ->  E. z  e.  A  (/)  C_  z
)
2422, 23mpan2 653 . . . . . 6  |-  ( A  =/=  (/)  ->  E. z  e.  A  (/)  C_  z
)
2524adantr 452 . . . . 5  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  E. z  e.  A  (/)  C_  z
)
2625a1d 23 . . . 4  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z
) )
27 id 20 . . . . . . . . 9  |-  ( ( b  u.  { c } )  C_  U. A  ->  ( b  u.  {
c } )  C_  U. A )
2827unssad 3516 . . . . . . . 8  |-  ( ( b  u.  { c } )  C_  U. A  ->  b  C_  U. A )
2928imim1i 56 . . . . . . 7  |-  ( ( b  C_  U. A  ->  E. z  e.  A  b  C_  z )  -> 
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  b  C_  z ) )
30 sseq2 3362 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
b  C_  z  <->  b  C_  w ) )
3130cbvrexv 2925 . . . . . . . . . 10  |-  ( E. z  e.  A  b 
C_  z  <->  E. w  e.  A  b  C_  w )
32 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  ( b  u.  { c } ) 
C_  U. A )
3332unssbd 3517 . . . . . . . . . . . . 13  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  { c }  C_  U. A )
34 vex 2951 . . . . . . . . . . . . . 14  |-  c  e. 
_V
3534snss 3918 . . . . . . . . . . . . 13  |-  ( c  e.  U. A  <->  { c }  C_  U. A )
3633, 35sylibr 204 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  c  e.  U. A )
37 eluni2 4011 . . . . . . . . . . . 12  |-  ( c  e.  U. A  <->  E. u  e.  A  c  e.  u )
3836, 37sylib 189 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  E. u  e.  A  c  e.  u )
39 reeanv 2867 . . . . . . . . . . . 12  |-  ( E. u  e.  A  E. w  e.  A  (
c  e.  u  /\  b  C_  w )  <->  ( E. u  e.  A  c  e.  u  /\  E. w  e.  A  b  C_  w ) )
40 simpllr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  -> [ C.]  Or  A
)
41 simprlr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  w  e.  A )
42 simprll 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  u  e.  A )
43 sorpssun 6521 . . . . . . . . . . . . . . . 16  |-  ( ( [
C.]  Or  A  /\  ( w  e.  A  /\  u  e.  A
) )  ->  (
w  u.  u )  e.  A )
4440, 41, 42, 43syl12anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  ( w  u.  u )  e.  A
)
45 simprrr 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  b  C_  w )
46 simprrl 741 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  c  e.  u )
4746snssd 3935 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  { c }  C_  u )
48 unss12 3511 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  w  /\  { c }  C_  u
)  ->  ( b  u.  { c } ) 
C_  ( w  u.  u ) )
4945, 47, 48syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  ( b  u.  { c } ) 
C_  ( w  u.  u ) )
50 sseq2 3362 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  u.  u )  ->  (
( b  u.  {
c } )  C_  z 
<->  ( b  u.  {
c } )  C_  ( w  u.  u
) ) )
5150rspcev 3044 . . . . . . . . . . . . . . 15  |-  ( ( ( w  u.  u
)  e.  A  /\  ( b  u.  {
c } )  C_  ( w  u.  u
) )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z )
5244, 49, 51syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z )
5352expr 599 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( u  e.  A  /\  w  e.  A
) )  ->  (
( c  e.  u  /\  b  C_  w )  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5453rexlimdvva 2829 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  ( E. u  e.  A  E. w  e.  A  (
c  e.  u  /\  b  C_  w )  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5539, 54syl5bir 210 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  ( ( E. u  e.  A  c  e.  u  /\  E. w  e.  A  b 
C_  w )  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5638, 55mpand 657 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  ( E. w  e.  A  b  C_  w  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) )
5731, 56syl5bi 209 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  (
b  u.  { c } )  C_  U. A
)  ->  ( E. z  e.  A  b  C_  z  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) )
5857ex 424 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  (
( b  u.  {
c } )  C_  U. A  ->  ( E. z  e.  A  b  C_  z  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
5958a2d 24 . . . . . . 7  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  (
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  b  C_  z )  ->  (
( b  u.  {
c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
6029, 59syl5 30 . . . . . 6  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  (
( b  C_  U. A  ->  E. z  e.  A  b  C_  z )  -> 
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
6160a2i 13 . . . . 5  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  (
b  C_  U. A  ->  E. z  e.  A  b  C_  z ) )  ->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
6261a1i 11 . . . 4  |-  ( b  e.  Fin  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) )  -> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) ) )
635, 10, 15, 20, 26, 62findcard2 7340 . . 3  |-  ( B  e.  Fin  ->  (
( A  =/=  (/)  /\ [ C.]  Or  A )  ->  ( B  C_  U. A  ->  E. z  e.  A  B  C_  z ) ) )
6463com12 29 . 2  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A )  ->  ( B  e.  Fin  ->  ( B  C_  U. A  ->  E. z  e.  A  B  C_  z ) ) )
6564imp32 423 1  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A )  /\  ( B  e.  Fin  /\  B  C_ 
U. A ) )  ->  E. z  e.  A  B  C_  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    u. cun 3310    C_ wss 3312   (/)c0 3620   {csn 3806   U.cuni 4007    Or wor 4494   [ C.] crpss 6513   Fincfn 7101
This theorem is referenced by:  alexsubALTlem2  18071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-rpss 6514  df-1o 6716  df-er 6897  df-en 7102  df-fin 7105
  Copyright terms: Public domain W3C validator