Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Unicode version

Theorem fiphp3d 26902
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a  |-  ( ph  ->  A  ~~  NN )
fiphp3d.b  |-  ( ph  ->  B  e.  Fin )
fiphp3d.c  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  B )
Assertion
Ref Expression
fiphp3d  |-  ( ph  ->  E. y  e.  B  { x  e.  A  |  D  =  y }  ~~  NN )
Distinct variable groups:    x, A, y    ph, x, y    x, B, y    y, D
Allowed substitution hint:    D( x)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 7075 . . . . 5  |-  -.  om  e.  Fin
2 fiphp3d.c . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  B )
3 risset 2590 . . . . . . . . . . . 12  |-  ( D  e.  B  <->  E. y  e.  B  y  =  D )
4 eqcom 2285 . . . . . . . . . . . . 13  |-  ( y  =  D  <->  D  =  y )
54rexbii 2568 . . . . . . . . . . . 12  |-  ( E. y  e.  B  y  =  D  <->  E. y  e.  B  D  =  y )
63, 5bitri 240 . . . . . . . . . . 11  |-  ( D  e.  B  <->  E. y  e.  B  D  =  y )
72, 6sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  B  D  =  y )
87ralrimiva 2626 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  E. y  e.  B  D  =  y )
9 rabid2 2717 . . . . . . . . 9  |-  ( A  =  { x  e.  A  |  E. y  e.  B  D  =  y }  <->  A. x  e.  A  E. y  e.  B  D  =  y )
108, 9sylibr 203 . . . . . . . 8  |-  ( ph  ->  A  =  { x  e.  A  |  E. y  e.  B  D  =  y } )
11 iunrab 3949 . . . . . . . 8  |-  U_ y  e.  B  { x  e.  A  |  D  =  y }  =  { x  e.  A  |  E. y  e.  B  D  =  y }
1210, 11syl6reqr 2334 . . . . . . 7  |-  ( ph  ->  U_ y  e.  B  { x  e.  A  |  D  =  y }  =  A )
1312eleq1d 2349 . . . . . 6  |-  ( ph  ->  ( U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin  <->  A  e.  Fin ) )
14 fiphp3d.a . . . . . . . 8  |-  ( ph  ->  A  ~~  NN )
15 nnenom 11042 . . . . . . . 8  |-  NN  ~~  om
16 entr 6913 . . . . . . . 8  |-  ( ( A  ~~  NN  /\  NN  ~~  om )  ->  A  ~~  om )
1714, 15, 16sylancl 643 . . . . . . 7  |-  ( ph  ->  A  ~~  om )
18 enfi 7079 . . . . . . 7  |-  ( A 
~~  om  ->  ( A  e.  Fin  <->  om  e.  Fin ) )
1917, 18syl 15 . . . . . 6  |-  ( ph  ->  ( A  e.  Fin  <->  om  e.  Fin ) )
2013, 19bitrd 244 . . . . 5  |-  ( ph  ->  ( U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin  <->  om  e.  Fin ) )
211, 20mtbiri 294 . . . 4  |-  ( ph  ->  -.  U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
22 fiphp3d.b . . . . 5  |-  ( ph  ->  B  e.  Fin )
23 iunfi 7144 . . . . 5  |-  ( ( B  e.  Fin  /\  A. y  e.  B  {
x  e.  A  |  D  =  y }  e.  Fin )  ->  U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
2422, 23sylan 457 . . . 4  |-  ( (
ph  /\  A. y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )  ->  U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
2521, 24mtand 640 . . 3  |-  ( ph  ->  -.  A. y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
26 rexnal 2554 . . 3  |-  ( E. y  e.  B  -.  { x  e.  A  |  D  =  y }  e.  Fin  <->  -.  A. y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
2725, 26sylibr 203 . 2  |-  ( ph  ->  E. y  e.  B  -.  { x  e.  A  |  D  =  y }  e.  Fin )
2817, 15jctir 524 . . . . 5  |-  ( ph  ->  ( A  ~~  om  /\  NN  ~~  om )
)
29 ssrab2 3258 . . . . . 6  |-  { x  e.  A  |  D  =  y }  C_  A
3029jctl 525 . . . . 5  |-  ( -. 
{ x  e.  A  |  D  =  y }  e.  Fin  ->  ( { x  e.  A  |  D  =  y }  C_  A  /\  -.  { x  e.  A  |  D  =  y }  e.  Fin ) )
31 ctbnfien 26901 . . . . 5  |-  ( ( ( A  ~~  om  /\  NN  ~~  om )  /\  ( { x  e.  A  |  D  =  y }  C_  A  /\  -.  { x  e.  A  |  D  =  y }  e.  Fin ) )  ->  { x  e.  A  |  D  =  y }  ~~  NN )
3228, 30, 31syl2an 463 . . . 4  |-  ( (
ph  /\  -.  { x  e.  A  |  D  =  y }  e.  Fin )  ->  { x  e.  A  |  D  =  y }  ~~  NN )
3332ex 423 . . 3  |-  ( ph  ->  ( -.  { x  e.  A  |  D  =  y }  e.  Fin  ->  { x  e.  A  |  D  =  y }  ~~  NN ) )
3433reximdv 2654 . 2  |-  ( ph  ->  ( E. y  e.  B  -.  { x  e.  A  |  D  =  y }  e.  Fin  ->  E. y  e.  B  { x  e.  A  |  D  =  y }  ~~  NN ) )
3527, 34mpd 14 1  |-  ( ph  ->  E. y  e.  B  { x  e.  A  |  D  =  y }  ~~  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   U_ciun 3905   class class class wbr 4023   omcom 4656    ~~ cen 6860   Fincfn 6863   NNcn 9746
This theorem is referenced by:  pellexlem5  26918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231
  Copyright terms: Public domain W3C validator