MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  firest Unicode version

Theorem firest 13353
Description: The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
firest  |-  ( fi
`  ( Jt  A ) )  =  ( ( fi `  J )t  A )

Proof of Theorem firest
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 5899 . . . . . 6  |-  ( Jt  A )  e.  _V
2 elfi2 7184 . . . . . 6  |-  ( ( Jt  A )  e.  _V  ->  ( x  e.  ( fi `  ( Jt  A ) )  <->  E. y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) x  =  |^| y
) )
31, 2ax-mp 8 . . . . 5  |-  ( x  e.  ( fi `  ( Jt  A ) )  <->  E. y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) x  =  |^| y
)
4 eldifi 3311 . . . . . . . . . . 11  |-  ( y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } )  ->  y  e.  ( ~P ( Jt  A )  i^i  Fin ) )
54adantl 452 . . . . . . . . . 10  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  y  e.  ( ~P ( Jt  A )  i^i  Fin ) )
6 elfpw 7173 . . . . . . . . . . 11  |-  ( y  e.  ( ~P ( Jt  A )  i^i  Fin ) 
<->  ( y  C_  ( Jt  A )  /\  y  e.  Fin ) )
76simprbi 450 . . . . . . . . . 10  |-  ( y  e.  ( ~P ( Jt  A )  i^i  Fin )  ->  y  e.  Fin )
85, 7syl 15 . . . . . . . . 9  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  y  e.  Fin )
96simplbi 446 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P ( Jt  A )  i^i  Fin )  ->  y  C_  ( Jt  A ) )
105, 9syl 15 . . . . . . . . . . . 12  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  y  C_  ( Jt  A ) )
1110sseld 3192 . . . . . . . . . . 11  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  ( z  e.  y  ->  z  e.  ( Jt  A ) ) )
12 elrest 13348 . . . . . . . . . . . 12  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. y  e.  J  z  =  ( y  i^i  A
) ) )
1312adantr 451 . . . . . . . . . . 11  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  ( z  e.  ( Jt  A )  <->  E. y  e.  J  z  =  ( y  i^i  A
) ) )
1411, 13sylibd 205 . . . . . . . . . 10  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  ( z  e.  y  ->  E. y  e.  J  z  =  ( y  i^i  A
) ) )
1514ralrimiv 2638 . . . . . . . . 9  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  A. z  e.  y  E. y  e.  J  z  =  ( y  i^i  A ) )
16 ineq1 3376 . . . . . . . . . . 11  |-  ( y  =  ( f `  z )  ->  (
y  i^i  A )  =  ( ( f `
 z )  i^i 
A ) )
1716eqeq2d 2307 . . . . . . . . . 10  |-  ( y  =  ( f `  z )  ->  (
z  =  ( y  i^i  A )  <->  z  =  ( ( f `  z )  i^i  A
) ) )
1817ac6sfi 7117 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  A. z  e.  y  E. y  e.  J  z  =  ( y  i^i 
A ) )  ->  E. f ( f : y --> J  /\  A. z  e.  y  z  =  ( ( f `
 z )  i^i 
A ) ) )
198, 15, 18syl2anc 642 . . . . . . . 8  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  E. f ( f : y --> J  /\  A. z  e.  y  z  =  ( ( f `
 z )  i^i 
A ) ) )
20 eldifsni 3763 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } )  ->  y  =/=  (/) )
2120ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
y  =/=  (/) )
22 iinin1 3989 . . . . . . . . . . . . 13  |-  ( y  =/=  (/)  ->  |^|_ z  e.  y  ( ( f `
 z )  i^i 
A )  =  (
|^|_ z  e.  y  ( f `  z
)  i^i  A )
)
2321, 22syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  |^|_ z  e.  y  ( ( f `  z
)  i^i  A )  =  ( |^|_ z  e.  y  ( f `  z )  i^i  A
) )
24 fvex 5555 . . . . . . . . . . . . . 14  |-  ( fi
`  J )  e. 
_V
2524a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
( fi `  J
)  e.  _V )
26 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  A  e.  _V )
27 ffn 5405 . . . . . . . . . . . . . . . 16  |-  ( f : y --> J  -> 
f  Fn  y )
2827adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
f  Fn  y )
29 fniinfv 5597 . . . . . . . . . . . . . . 15  |-  ( f  Fn  y  ->  |^|_ z  e.  y  ( f `  z )  =  |^| ran  f )
3028, 29syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  |^|_ z  e.  y  ( f `  z )  =  |^| ran  f
)
31 simplll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  J  e.  _V )
32 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
f : y --> J )
338adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
y  e.  Fin )
34 intrnfi 7186 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  _V  /\  ( f : y --> J  /\  y  =/=  (/)  /\  y  e.  Fin ) )  ->  |^| ran  f  e.  ( fi `  J ) )
3531, 32, 21, 33, 34syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  |^| ran  f  e.  ( fi `  J ) )
3630, 35eqeltrd 2370 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  |^|_ z  e.  y  ( f `  z )  e.  ( fi `  J ) )
37 elrestr 13349 . . . . . . . . . . . . 13  |-  ( ( ( fi `  J
)  e.  _V  /\  A  e.  _V  /\  |^|_ z  e.  y  (
f `  z )  e.  ( fi `  J
) )  ->  ( |^|_ z  e.  y  ( f `  z )  i^i  A )  e.  ( ( fi `  J )t  A ) )
3825, 26, 36, 37syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
( |^|_ z  e.  y  ( f `  z
)  i^i  A )  e.  ( ( fi `  J )t  A ) )
3923, 38eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  ->  |^|_ z  e.  y  ( ( f `  z
)  i^i  A )  e.  ( ( fi `  J )t  A ) )
40 intiin 3972 . . . . . . . . . . . . 13  |-  |^| y  =  |^|_ z  e.  y  z
41 iineq2 3938 . . . . . . . . . . . . 13  |-  ( A. z  e.  y  z  =  ( ( f `
 z )  i^i 
A )  ->  |^|_ z  e.  y  z  =  |^|_ z  e.  y  ( ( f `  z
)  i^i  A )
)
4240, 41syl5eq 2340 . . . . . . . . . . . 12  |-  ( A. z  e.  y  z  =  ( ( f `
 z )  i^i 
A )  ->  |^| y  =  |^|_ z  e.  y  ( ( f `  z )  i^i  A
) )
4342eleq1d 2362 . . . . . . . . . . 11  |-  ( A. z  e.  y  z  =  ( ( f `
 z )  i^i 
A )  ->  ( |^| y  e.  (
( fi `  J
)t 
A )  <->  |^|_ z  e.  y  ( ( f `
 z )  i^i 
A )  e.  ( ( fi `  J
)t 
A ) ) )
4439, 43syl5ibrcom 213 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
_V  /\  A  e.  _V )  /\  y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  /\  f : y --> J )  -> 
( A. z  e.  y  z  =  ( ( f `  z
)  i^i  A )  ->  |^| y  e.  ( ( fi `  J
)t 
A ) ) )
4544expimpd 586 . . . . . . . . 9  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  ( ( f : y --> J  /\  A. z  e.  y  z  =  ( ( f `
 z )  i^i 
A ) )  ->  |^| y  e.  (
( fi `  J
)t 
A ) ) )
4645exlimdv 1626 . . . . . . . 8  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  ( E. f
( f : y --> J  /\  A. z  e.  y  z  =  ( ( f `  z )  i^i  A
) )  ->  |^| y  e.  ( ( fi `  J )t  A ) ) )
4719, 46mpd 14 . . . . . . 7  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  |^| y  e.  ( ( fi `  J
)t 
A ) )
48 eleq1 2356 . . . . . . 7  |-  ( x  =  |^| y  -> 
( x  e.  ( ( fi `  J
)t 
A )  <->  |^| y  e.  ( ( fi `  J )t  A ) ) )
4947, 48syl5ibrcom 213 . . . . . 6  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) )  ->  ( x  = 
|^| y  ->  x  e.  ( ( fi `  J )t  A ) ) )
5049rexlimdva 2680 . . . . 5  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( E. y  e.  ( ( ~P ( Jt  A )  i^i  Fin )  \  { (/) } ) x  =  |^| y  ->  x  e.  ( ( fi `  J )t  A ) ) )
513, 50syl5bi 208 . . . 4  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( fi `  ( Jt  A ) )  ->  x  e.  ( ( fi `  J )t  A ) ) )
52 simpr 447 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  A  e.  _V )
53 elrest 13348 . . . . . 6  |-  ( ( ( fi `  J
)  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( ( fi `  J
)t 
A )  <->  E. z  e.  ( fi `  J
) x  =  ( z  i^i  A ) ) )
5424, 52, 53sylancr 644 . . . . 5  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( ( fi `  J
)t 
A )  <->  E. z  e.  ( fi `  J
) x  =  ( z  i^i  A ) ) )
55 elfi2 7184 . . . . . . . 8  |-  ( J  e.  _V  ->  (
z  e.  ( fi
`  J )  <->  E. y  e.  ( ( ~P J  i^i  Fin )  \  { (/)
} ) z  = 
|^| y ) )
5655adantr 451 . . . . . . 7  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( z  e.  ( fi `  J )  <->  E. y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) z  =  |^| y ) )
57 eldifsni 3763 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ( ~P J  i^i  Fin )  \  { (/) } )  -> 
y  =/=  (/) )
5857adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  y  =/=  (/) )
59 iinin1 3989 . . . . . . . . . . . . 13  |-  ( y  =/=  (/)  ->  |^|_ z  e.  y  ( z  i^i 
A )  =  (
|^|_ z  e.  y  z  i^i  A ) )
6058, 59syl 15 . . . . . . . . . . . 12  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  |^|_ z  e.  y  ( z  i^i  A )  =  (
|^|_ z  e.  y  z  i^i  A ) )
6140ineq1i 3379 . . . . . . . . . . . 12  |-  ( |^| y  i^i  A )  =  ( |^|_ z  e.  y  z  i^i  A )
6260, 61syl6eqr 2346 . . . . . . . . . . 11  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  |^|_ z  e.  y  ( z  i^i  A )  =  (
|^| y  i^i  A
) )
631a1i 10 . . . . . . . . . . . 12  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  ( Jt  A )  e.  _V )
64 eldifi 3311 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( ~P J  i^i  Fin )  \  { (/) } )  -> 
y  e.  ( ~P J  i^i  Fin )
)
6564adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  y  e.  ( ~P J  i^i  Fin ) )
66 elfpw 7173 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ~P J  i^i  Fin )  <->  ( y  C_  J  /\  y  e. 
Fin ) )
6766simplbi 446 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ~P J  i^i  Fin )  ->  y  C_  J )
6865, 67syl 15 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  y  C_  J )
69 elrestr 13349 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  _V  /\  A  e.  _V  /\  z  e.  J )  ->  (
z  i^i  A )  e.  ( Jt  A ) )
70693expa 1151 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  z  e.  J
)  ->  ( z  i^i  A )  e.  ( Jt  A ) )
7170ralrimiva 2639 . . . . . . . . . . . . . 14  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  A. z  e.  J  ( z  i^i  A
)  e.  ( Jt  A ) )
7271adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  A. z  e.  J  ( z  i^i  A )  e.  ( Jt  A ) )
73 ssralv 3250 . . . . . . . . . . . . 13  |-  ( y 
C_  J  ->  ( A. z  e.  J  ( z  i^i  A
)  e.  ( Jt  A )  ->  A. z  e.  y  ( z  i^i  A )  e.  ( Jt  A ) ) )
7468, 72, 73sylc 56 . . . . . . . . . . . 12  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  A. z  e.  y  ( z  i^i  A )  e.  ( Jt  A ) )
7566simprbi 450 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P J  i^i  Fin )  ->  y  e.  Fin )
7665, 75syl 15 . . . . . . . . . . . 12  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  y  e.  Fin )
77 iinfi 7187 . . . . . . . . . . . 12  |-  ( ( ( Jt  A )  e.  _V  /\  ( A. z  e.  y  ( z  i^i 
A )  e.  ( Jt  A )  /\  y  =/=  (/)  /\  y  e. 
Fin ) )  ->  |^|_ z  e.  y  ( z  i^i  A )  e.  ( fi `  ( Jt  A ) ) )
7863, 74, 58, 76, 77syl13anc 1184 . . . . . . . . . . 11  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  |^|_ z  e.  y  ( z  i^i  A )  e.  ( fi `  ( Jt  A ) ) )
7962, 78eqeltrrd 2371 . . . . . . . . . 10  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  ( |^| y  i^i  A )  e.  ( fi `  ( Jt  A ) ) )
80 eleq1 2356 . . . . . . . . . 10  |-  ( x  =  ( |^| y  i^i  A )  ->  (
x  e.  ( fi
`  ( Jt  A ) )  <->  ( |^| y  i^i  A )  e.  ( fi `  ( Jt  A ) ) ) )
8179, 80syl5ibrcom 213 . . . . . . . . 9  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  (
x  =  ( |^| y  i^i  A )  ->  x  e.  ( fi `  ( Jt  A ) ) ) )
82 ineq1 3376 . . . . . . . . . . 11  |-  ( z  =  |^| y  -> 
( z  i^i  A
)  =  ( |^| y  i^i  A ) )
8382eqeq2d 2307 . . . . . . . . . 10  |-  ( z  =  |^| y  -> 
( x  =  ( z  i^i  A )  <-> 
x  =  ( |^| y  i^i  A ) ) )
8483imbi1d 308 . . . . . . . . 9  |-  ( z  =  |^| y  -> 
( ( x  =  ( z  i^i  A
)  ->  x  e.  ( fi `  ( Jt  A ) ) )  <->  ( x  =  ( |^| y  i^i  A )  ->  x  e.  ( fi `  ( Jt  A ) ) ) ) )
8581, 84syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( J  e.  _V  /\  A  e.  _V )  /\  y  e.  (
( ~P J  i^i  Fin )  \  { (/) } ) )  ->  (
z  =  |^| y  ->  ( x  =  ( z  i^i  A )  ->  x  e.  ( fi `  ( Jt  A ) ) ) ) )
8685rexlimdva 2680 . . . . . . 7  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( E. y  e.  ( ( ~P J  i^i  Fin )  \  { (/)
} ) z  = 
|^| y  ->  (
x  =  ( z  i^i  A )  ->  x  e.  ( fi `  ( Jt  A ) ) ) ) )
8756, 86sylbid 206 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( z  e.  ( fi `  J )  ->  ( x  =  ( z  i^i  A
)  ->  x  e.  ( fi `  ( Jt  A ) ) ) ) )
8887rexlimdv 2679 . . . . 5  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( E. z  e.  ( fi `  J
) x  =  ( z  i^i  A )  ->  x  e.  ( fi `  ( Jt  A ) ) ) )
8954, 88sylbid 206 . . . 4  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( ( fi `  J
)t 
A )  ->  x  e.  ( fi `  ( Jt  A ) ) ) )
9051, 89impbid 183 . . 3  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( fi `  ( Jt  A ) )  <->  x  e.  ( ( fi `  J )t  A ) ) )
9190eqrdv 2294 . 2  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( fi `  ( Jt  A ) )  =  ( ( fi `  J )t  A ) )
92 fi0 7189 . . 3  |-  ( fi
`  (/) )  =  (/)
93 relxp 4810 . . . . . 6  |-  Rel  ( _V  X.  _V )
94 restfn 13345 . . . . . . . 8  |-t  Fn  ( _V  X.  _V )
95 fndm 5359 . . . . . . . 8  |-  (t  Fn  ( _V  X.  _V )  ->  domt  =  ( _V  X.  _V ) )
9694, 95ax-mp 8 . . . . . . 7  |-  domt  =  ( _V  X.  _V )
9796releqi 4788 . . . . . 6  |-  ( Rel 
domt  <->  Rel  ( _V  X.  _V ) )
9893, 97mpbir 200 . . . . 5  |-  Rel  domt
9998ovprc 5901 . . . 4  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  =  (/) )
10099fveq2d 5545 . . 3  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  ->  ( fi `  ( Jt  A ) )  =  ( fi `  (/) ) )
101 ianor 474 . . . 4  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  <->  ( -.  J  e.  _V  \/  -.  A  e.  _V ) )
102 fvprc 5535 . . . . . . 7  |-  ( -.  J  e.  _V  ->  ( fi `  J )  =  (/) )
103102oveq1d 5889 . . . . . 6  |-  ( -.  J  e.  _V  ->  ( ( fi `  J
)t 
A )  =  (
(/)t  A ) )
104 0rest 13350 . . . . . 6  |-  ( (/)t  A )  =  (/)
105103, 104syl6eq 2344 . . . . 5  |-  ( -.  J  e.  _V  ->  ( ( fi `  J
)t 
A )  =  (/) )
10698ovprc2 5903 . . . . 5  |-  ( -.  A  e.  _V  ->  ( ( fi `  J
)t 
A )  =  (/) )
107105, 106jaoi 368 . . . 4  |-  ( ( -.  J  e.  _V  \/  -.  A  e.  _V )  ->  ( ( fi
`  J )t  A )  =  (/) )
108101, 107sylbi 187 . . 3  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  ->  ( ( fi `  J )t  A )  =  (/) )
10992, 100, 1083eqtr4a 2354 . 2  |-  ( -.  ( J  e.  _V  /\  A  e.  _V )  ->  ( fi `  ( Jt  A ) )  =  ( ( fi `  J )t  A ) )
11091, 109pm2.61i 156 1  |-  ( fi
`  ( Jt  A ) )  =  ( ( fi `  J )t  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   |^|cint 3878   |^|_ciin 3922    X. cxp 4703   dom cdm 4705   ran crn 4706   Rel wrel 4710    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   Fincfn 6879   ficfi 7180   ↾t crest 13341
This theorem is referenced by:  ordtrest2  16950  xkoptsub  17364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-rest 13343
  Copyright terms: Public domain W3C validator