MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Unicode version

Theorem fislw 15186
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of  P dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
fislw  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( H  e.  ( P pSyl  G )  <->  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )

Proof of Theorem fislw
Dummy variables  k  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  H  e.  ( P pSyl  G ) )
2 slwsubg 15171 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
31, 2syl 16 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  H  e.  (SubGrp `  G )
)
4 fislw.1 . . . 4  |-  X  =  ( Base `  G
)
5 simpl2 961 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  X  e.  Fin )
64, 5, 1slwhash 15185 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
73, 6jca 519 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  H  e.  ( P pSyl  G ) )  ->  ( H  e.  (SubGrp `  G
)  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8 simpl3 962 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  P  e.  Prime )
9 simprl 733 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  e.  (SubGrp `  G ) )
10 simpl2 961 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  X  e.  Fin )
1110adantr 452 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  X  e.  Fin )
12 simprl 733 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  e.  (SubGrp `  G ) )
134subgss 14872 . . . . . . . . 9  |-  ( k  e.  (SubGrp `  G
)  ->  k  C_  X )
1412, 13syl 16 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  C_  X
)
15 ssfi 7265 . . . . . . . 8  |-  ( ( X  e.  Fin  /\  k  C_  X )  -> 
k  e.  Fin )
1611, 14, 15syl2anc 643 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  e.  Fin )
17 simprrl 741 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  C_  k
)
18 ssdomg 7089 . . . . . . . . 9  |-  ( k  e.  Fin  ->  ( H  C_  k  ->  H  ~<_  k ) )
1916, 17, 18sylc 58 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  ~<_  k )
20 simprrr 742 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P pGrp  ( Gs  k
) )
21 eqid 2387 . . . . . . . . . . . . . . . . . 18  |-  ( Gs  k )  =  ( Gs  k )
2221subggrp 14874 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  (SubGrp `  G
)  ->  ( Gs  k
)  e.  Grp )
2312, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( Gs  k )  e.  Grp )
2421subgbas 14875 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  (SubGrp `  G
)  ->  k  =  ( Base `  ( Gs  k
) ) )
2512, 24syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  =  (
Base `  ( Gs  k
) ) )
2625, 16eqeltrrd 2462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( Base `  ( Gs  k ) )  e. 
Fin )
27 eqid 2387 . . . . . . . . . . . . . . . . 17  |-  ( Base `  ( Gs  k ) )  =  ( Base `  ( Gs  k ) )
2827pgpfi 15166 . . . . . . . . . . . . . . . 16  |-  ( ( ( Gs  k )  e. 
Grp  /\  ( Base `  ( Gs  k ) )  e.  Fin )  -> 
( P pGrp  ( Gs  k
)  <->  ( P  e. 
Prime  /\  E. n  e. 
NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) ) )
2923, 26, 28syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P pGrp  ( Gs  k )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) ) )
3020, 29mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  e. 
Prime  /\  E. n  e. 
NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) )
3130simpld 446 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P  e.  Prime )
32 prmnn 13009 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
3331, 32syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P  e.  NN )
3433nnred 9947 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  P  e.  RR )
3533nnge1d 9974 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  1  <_  P
)
36 eqid 2387 . . . . . . . . . . . . . . . . . 18  |-  ( 0g
`  G )  =  ( 0g `  G
)
3736subg0cl 14879 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  k )
3812, 37syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( 0g `  G )  e.  k )
39 ne0i 3577 . . . . . . . . . . . . . . . 16  |-  ( ( 0g `  G )  e.  k  ->  k  =/=  (/) )
4038, 39syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  =/=  (/) )
41 hashnncl 11572 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Fin  ->  (
( # `  k )  e.  NN  <->  k  =/=  (/) ) )
4216, 41syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  e.  NN  <->  k  =/=  (/) ) )
4340, 42mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  e.  NN )
4431, 43pccld 13151 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  k )
)  e.  NN0 )
4544nn0zd 10305 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  k )
)  e.  ZZ )
46 simpl1 960 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  G  e.  Grp )
474grpbn0 14761 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  Grp  ->  X  =/=  (/) )
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  X  =/=  (/) )
49 hashnncl 11572 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
5010, 49syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( ( # `
 X )  e.  NN  <->  X  =/=  (/) ) )
5148, 50mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  X
)  e.  NN )
528, 51pccld 13151 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
5352adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  X )
)  e.  NN0 )
5453nn0zd 10305 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  X )
)  e.  ZZ )
554lagsubg 14929 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 k )  ||  ( # `  X ) )
5612, 11, 55syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  ||  ( # `  X
) )
5743nnzd 10306 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  e.  ZZ )
5851adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  X
)  e.  NN )
5958nnzd 10306 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  X
)  e.  ZZ )
60 pc2dvds 13179 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  k
)  e.  ZZ  /\  ( # `  X )  e.  ZZ )  -> 
( ( # `  k
)  ||  ( # `  X
)  <->  A. p  e.  Prime  ( p  pCnt  ( # `  k
) )  <_  (
p  pCnt  ( # `  X
) ) ) )
6157, 59, 60syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  ||  ( # `
 X )  <->  A. p  e.  Prime  ( p  pCnt  (
# `  k )
)  <_  ( p  pCnt  ( # `  X
) ) ) )
6256, 61mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  A. p  e.  Prime  ( p  pCnt  ( # `  k
) )  <_  (
p  pCnt  ( # `  X
) ) )
63 oveq1 6027 . . . . . . . . . . . . . . 15  |-  ( p  =  P  ->  (
p  pCnt  ( # `  k
) )  =  ( P  pCnt  ( # `  k
) ) )
64 oveq1 6027 . . . . . . . . . . . . . . 15  |-  ( p  =  P  ->  (
p  pCnt  ( # `  X
) )  =  ( P  pCnt  ( # `  X
) ) )
6563, 64breq12d 4166 . . . . . . . . . . . . . 14  |-  ( p  =  P  ->  (
( p  pCnt  ( # `
 k ) )  <_  ( p  pCnt  (
# `  X )
)  <->  ( P  pCnt  (
# `  k )
)  <_  ( P  pCnt  ( # `  X
) ) ) )
6665rspcv 2991 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( A. p  e.  Prime  ( p 
pCnt  ( # `  k
) )  <_  (
p  pCnt  ( # `  X
) )  ->  ( P  pCnt  ( # `  k
) )  <_  ( P  pCnt  ( # `  X
) ) ) )
6731, 62, 66sylc 58 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  k )
)  <_  ( P  pCnt  ( # `  X
) ) )
68 eluz2 10426 . . . . . . . . . . . 12  |-  ( ( P  pCnt  ( # `  X
) )  e.  (
ZZ>= `  ( P  pCnt  (
# `  k )
) )  <->  ( ( P  pCnt  ( # `  k
) )  e.  ZZ  /\  ( P  pCnt  ( # `
 X ) )  e.  ZZ  /\  ( P  pCnt  ( # `  k
) )  <_  ( P  pCnt  ( # `  X
) ) ) )
6945, 54, 67, 68syl3anbrc 1138 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P  pCnt  (
# `  X )
)  e.  ( ZZ>= `  ( P  pCnt  ( # `  k ) ) ) )
7034, 35, 69leexp2ad 11482 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( P ^
( P  pCnt  ( # `
 k ) ) )  <_  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7130simprd 450 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) )
7225fveq2d 5672 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  =  ( # `  ( Base `  ( Gs  k ) ) ) )
7372eqeq1d 2395 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  =  ( P ^ n )  <-> 
( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) )
7473rexbidv 2670 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( E. n  e.  NN0  ( # `  k
)  =  ( P ^ n )  <->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  k ) ) )  =  ( P ^ n ) ) )
7571, 74mpbird 224 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  E. n  e.  NN0  ( # `  k )  =  ( P ^
n ) )
76 pcprmpw 13183 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  ( # `
 k )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  k )  =  ( P ^
n )  <->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  k )
) ) ) )
7731, 43, 76syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( E. n  e.  NN0  ( # `  k
)  =  ( P ^ n )  <->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  k )
) ) ) )
7875, 77mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  k )
) ) )
79 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
8070, 78, 793brtr4d 4183 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( # `  k
)  <_  ( # `  H
) )
814subgss 14872 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  H  C_  X
)
8281ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  C_  X
)
83 ssfi 7265 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
8410, 82, 83syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  e.  Fin )
8584adantr 452 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  e.  Fin )
86 hashdom 11580 . . . . . . . . . 10  |-  ( ( k  e.  Fin  /\  H  e.  Fin )  ->  ( ( # `  k
)  <_  ( # `  H
)  <->  k  ~<_  H ) )
8716, 85, 86syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  ( ( # `  k )  <_  ( # `
 H )  <->  k  ~<_  H ) )
8880, 87mpbid 202 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  k  ~<_  H )
89 sbth 7163 . . . . . . . 8  |-  ( ( H  ~<_  k  /\  k  ~<_  H )  ->  H  ~~  k )
9019, 88, 89syl2anc 643 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  ~~  k
)
91 fisseneq 7256 . . . . . . 7  |-  ( ( k  e.  Fin  /\  H  C_  k  /\  H  ~~  k )  ->  H  =  k )
9216, 17, 90, 91syl3anc 1184 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  ( k  e.  (SubGrp `  G )  /\  ( H  C_  k  /\  P pGrp  ( Gs  k
) ) ) )  ->  H  =  k )
9392expr 599 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  -> 
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  ->  H  =  k ) )
94 eqid 2387 . . . . . . . . . . . . 13  |-  ( Gs  H )  =  ( Gs  H )
9594subgbas 14875 . . . . . . . . . . . 12  |-  ( H  e.  (SubGrp `  G
)  ->  H  =  ( Base `  ( Gs  H
) ) )
9695ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  =  ( Base `  ( Gs  H
) ) )
9796fveq2d 5672 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  H
)  =  ( # `  ( Base `  ( Gs  H ) ) ) )
98 simprr 734 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
9997, 98eqtr3d 2421 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
100 oveq2 6028 . . . . . . . . . . 11  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
101100eqeq2d 2398 . . . . . . . . . 10  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 ( Base `  ( Gs  H ) ) )  =  ( P ^
n )  <->  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) ) )
102101rspcev 2995 . . . . . . . . 9  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 ( Base `  ( Gs  H ) ) )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) )
10352, 99, 102syl2anc 643 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) )
10494subggrp 14874 . . . . . . . . . 10  |-  ( H  e.  (SubGrp `  G
)  ->  ( Gs  H
)  e.  Grp )
105104ad2antrl 709 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( Gs  H
)  e.  Grp )
10696, 84eqeltrrd 2462 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( Base `  ( Gs  H ) )  e. 
Fin )
107 eqid 2387 . . . . . . . . . 10  |-  ( Base `  ( Gs  H ) )  =  ( Base `  ( Gs  H ) )
108107pgpfi 15166 . . . . . . . . 9  |-  ( ( ( Gs  H )  e.  Grp  /\  ( Base `  ( Gs  H ) )  e. 
Fin )  ->  ( P pGrp  ( Gs  H )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) ) ) )
109105, 106, 108syl2anc 643 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  ( P pGrp  ( Gs  H )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  H ) ) )  =  ( P ^ n ) ) ) )
1108, 103, 109mpbir2and 889 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  P pGrp  ( Gs  H ) )
111110adantr 452 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  ->  P pGrp  ( Gs  H ) )
112 oveq2 6028 . . . . . . . 8  |-  ( H  =  k  ->  ( Gs  H )  =  ( Gs  k ) )
113112breq2d 4165 . . . . . . 7  |-  ( H  =  k  ->  ( P pGrp  ( Gs  H )  <->  P pGrp  ( Gs  k ) ) )
114 eqimss 3343 . . . . . . . 8  |-  ( H  =  k  ->  H  C_  k )
115114biantrurd 495 . . . . . . 7  |-  ( H  =  k  ->  ( P pGrp  ( Gs  k )  <->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
116113, 115bitrd 245 . . . . . 6  |-  ( H  =  k  ->  ( P pGrp  ( Gs  H )  <->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
117111, 116syl5ibcom 212 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  -> 
( H  =  k  ->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
11893, 117impbid 184 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  /\  k  e.  (SubGrp `  G ) )  -> 
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <->  H  =  k ) )
119118ralrimiva 2732 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  A. k  e.  (SubGrp `  G )
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <->  H  =  k ) )
120 isslw 15169 . . 3  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
1218, 9, 119, 120syl3anbrc 1138 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  ->  H  e.  ( P pSyl  G )
)
1227, 121impbida 806 1  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  ->  ( H  e.  ( P pSyl  G )  <->  ( H  e.  (SubGrp `  G )  /\  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   E.wrex 2650    C_ wss 3263   (/)c0 3571   class class class wbr 4153   ` cfv 5394  (class class class)co 6020    ~~ cen 7042    ~<_ cdom 7043   Fincfn 7045    <_ cle 9054   NNcn 9932   NN0cn0 10153   ZZcz 10214   ZZ>=cuz 10420   ^cexp 11309   #chash 11545    || cdivides 12779   Primecprime 13006    pCnt cpc 13137   Basecbs 13396   ↾s cress 13397   0gc0g 13650   Grpcgrp 14612  SubGrpcsubg 14865   pGrp cpgp 15092   pSyl cslw 15093
This theorem is referenced by:  sylow3lem1  15188
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-disj 4124  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-omul 6665  df-er 6841  df-ec 6843  df-qs 6847  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-acn 7762  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-dvds 12780  df-gcd 12934  df-prm 13007  df-pc 13138  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-0g 13654  df-mnd 14617  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-eqg 14870  df-ghm 14931  df-ga 14994  df-od 15094  df-pgp 15096  df-slw 15097
  Copyright terms: Public domain W3C validator