MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Unicode version

Theorem fisseneq 7074
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3168 . . . . . 6  |-  ( A 
C.  B  <->  ( A  C_  B  /\  A  =/= 
B ) )
2 pssinf 7073 . . . . . . 7  |-  ( ( A  C.  B  /\  A  ~~  B )  ->  -.  B  e.  Fin )
32expcom 424 . . . . . 6  |-  ( A 
~~  B  ->  ( A  C.  B  ->  -.  B  e.  Fin )
)
41, 3syl5bir 209 . . . . 5  |-  ( A 
~~  B  ->  (
( A  C_  B  /\  A  =/=  B
)  ->  -.  B  e.  Fin ) )
54expdimp 426 . . . 4  |-  ( ( A  ~~  B  /\  A  C_  B )  -> 
( A  =/=  B  ->  -.  B  e.  Fin ) )
65necon4ad 2507 . . 3  |-  ( ( A  ~~  B  /\  A  C_  B )  -> 
( B  e.  Fin  ->  A  =  B ) )
763impia 1148 . 2  |-  ( ( A  ~~  B  /\  A  C_  B  /\  B  e.  Fin )  ->  A  =  B )
873com13 1156 1  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152    C. wpss 3153   class class class wbr 4023    ~~ cen 6860   Fincfn 6863
This theorem is referenced by:  en1eqsn  7088  en2eqpr  7637  sylow2blem1  14931  fislw  14936  sylow2  14937  cyggenod  15171  ablfac1c  15306  ablfac1eu  15308  fta1blem  19554  vieta1  19692  umgraex  23875  en2eleq  27381  psgnunilem1  27416  fiuneneq  27513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867
  Copyright terms: Public domain W3C validator