MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupcl Unicode version

Theorem fisupcl 7218
Description: A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.)
Assertion
Ref Expression
fisupcl  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)

Proof of Theorem fisupcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  R  Or  A )
2 simpr3 963 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  C_  A )
3 fisup2g 7217 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
4 ssrexv 3238 . . . 4  |-  ( B 
C_  A  ->  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
52, 3, 4sylc 56 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
61, 5supval2 7206 . 2  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  =  (
iota_ x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) ) )
7 breq2 4027 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
y R z  <->  y R x ) )
87rspcev 2884 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  y R x )  ->  E. z  e.  B  y R z )
98ex 423 . . . . . . . . 9  |-  ( x  e.  B  ->  (
y R x  ->  E. z  e.  B  y R z ) )
109ralrimivw 2627 . . . . . . . 8  |-  ( x  e.  B  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )
1110a1d 22 . . . . . . 7  |-  ( x  e.  B  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z )  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
1211anim2d 548 . . . . . 6  |-  ( x  e.  B  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R
z ) )  -> 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) ) )
1312rgen 2608 . . . . 5  |-  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
1413a1i 10 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
15 soss 4332 . . . . . . 7  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
162, 1, 15sylc 56 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  R  Or  B )
17 simpr1 961 . . . . . . 7  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  e.  Fin )
18 simpr2 962 . . . . . . 7  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  =/=  (/) )
19 fisupg 7105 . . . . . . 7  |-  ( ( R  Or  B  /\  B  e.  Fin  /\  B  =/=  (/) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) ) )
2016, 17, 18, 19syl3anc 1182 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
2116, 20supeu 7205 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
22 reurex 2754 . . . . 5  |-  ( E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
2321, 22syl 15 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
241, 5supeu 7205 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
25 riotass2 6332 . . . 4  |-  ( ( ( B  C_  A  /\  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  /\  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  ->  ( iota_ x  e.  B ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  ( iota_ x  e.  A ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
262, 14, 23, 24, 25syl22anc 1183 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  B
( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R
z ) ) )  =  ( iota_ x  e.  A ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
27 riotacl 6319 . . . 4  |-  ( E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( iota_ x  e.  B ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
2821, 27syl 15 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  B
( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R
z ) ) )  e.  B )
2926, 28eqeltrrd 2358 . 2  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  A
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) )  e.  B )
306, 29eqeltrd 2357 1  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   E!wreu 2545    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Or wor 4313   iota_crio 6297   Fincfn 6863   supcsup 7193
This theorem is referenced by:  fseqsupcl  11039  isercolllem2  12139  fsumcvg3  12202  mertenslem2  12341  prdsmet  17934  prdsbl  18037  mdegldg  19452  mdegcl  19455  aannenlem2  19709  aalioulem2  19713  ballotlemiex  23060  erdszelem5  23137  fisup2gOLD  25836  totbndbnd  25925  prdsbnd  25929  rencldnfilem  26315  aomclem2  26564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 6304  df-1o 6479  df-er 6660  df-en 6864  df-fin 6867  df-sup 7194
  Copyright terms: Public domain W3C validator