Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fixcnv Unicode version

Theorem fixcnv 25473
Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fixcnv  |-  Fix A  =  Fix `' A

Proof of Theorem fixcnv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2903 . . . 4  |-  x  e. 
_V
21, 1brcnv 4996 . . 3  |-  ( x `' A x  <->  x A x )
31elfix 25468 . . 3  |-  ( x  e.  Fix `' A  <->  x `' A x )
41elfix 25468 . . 3  |-  ( x  e.  Fix A  <->  x A x )
52, 3, 43bitr4ri 270 . 2  |-  ( x  e.  Fix A  <->  x  e.  Fix `' A )
65eqriv 2385 1  |-  Fix A  =  Fix `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   class class class wbr 4154   `'ccnv 4818   Fixcfix 25403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-dm 4829  df-fix 25425
  Copyright terms: Public domain W3C validator