Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcnv Unicode version

Theorem fldcnv 25056
Description: The field of a class equals the field of the its converse. (Contributed by FL, 16-Apr-2012.)
Assertion
Ref Expression
fldcnv  |-  ( dom 
A  u.  ran  A
)  =  ( dom  `' A  u.  ran  `' A )

Proof of Theorem fldcnv
StepHypRef Expression
1 uncom 3319 . 2  |-  ( dom 
A  u.  ran  A
)  =  ( ran 
A  u.  dom  A
)
2 df-rn 4700 . . 3  |-  ran  A  =  dom  `' A
3 dfdm4 4872 . . 3  |-  dom  A  =  ran  `' A
42, 3uneq12i 3327 . 2  |-  ( ran 
A  u.  dom  A
)  =  ( dom  `' A  u.  ran  `' A )
51, 4eqtri 2303 1  |-  ( dom 
A  u.  ran  A
)  =  ( dom  `' A  u.  ran  `' A )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    u. cun 3150   `'ccnv 4688   dom cdm 4689   ran crn 4690
This theorem is referenced by:  cnvref  25065
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-cnv 4697  df-dm 4699  df-rn 4700
  Copyright terms: Public domain W3C validator