Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  flddivrng Structured version   Unicode version

Theorem flddivrng 21993
 Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
flddivrng

Proof of Theorem flddivrng
StepHypRef Expression
1 df-fld 21992 . . 3
2 inss1 3553 . . 3
31, 2eqsstri 3370 . 2
43sseli 3336 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1725   cin 3311  cdrng 21983  ccm2 21988  cfld 21991 This theorem is referenced by:  isfld2  26569  isfldidl  26632 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-in 3319  df-ss 3326  df-fld 21992
 Copyright terms: Public domain W3C validator