Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldrels Unicode version

Theorem fldrels 25216
 Description: The field of a relation is a set. (Contributed by FL, 23-May-2011.)
Hypothesis
Ref Expression
fldrels.1
Assertion
Ref Expression
fldrels

Proof of Theorem fldrels
StepHypRef Expression
1 fldrels.1 . 2
2 uniexg 4533 . . 3
3 uniexg 4533 . . 3
42, 3syl 15 . 2
51, 4syl5eqel 2380 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1632   wcel 1696  cvv 2801  cuni 3843 This theorem is referenced by:  ubos  25359  mxlelt  25367 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-un 4528 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803  df-uni 3844
 Copyright terms: Public domain W3C validator