MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp Structured version   Unicode version

Theorem flfcnp 18028
Description: A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
flfcnp  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  L ) `  ( G  o.  F ) ) )

Proof of Theorem flfcnp
StepHypRef Expression
1 simprl 733 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  A  e.  ( ( J  fLimf  L ) `  F ) )
2 flfval 18014 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
32adantr 452 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
41, 3eleqtrd 2511 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  A  e.  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
5 simprr 734 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  G  e.  ( ( J  CnP  K ) `  A ) )
6 cnpflfi 18023 . . 3  |-  ( ( A  e.  ( J 
fLim  ( ( X 
FilMap  F ) `  L
) )  /\  G  e.  ( ( J  CnP  K ) `  A ) )  ->  ( G `  A )  e.  ( ( K  fLimf  ( ( X  FilMap  F ) `  L ) ) `  G ) )
74, 5, 6syl2anc 643 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G ) )
8 cnptop2 17299 . . . . . . . 8  |-  ( G  e.  ( ( J  CnP  K ) `  A )  ->  K  e.  Top )
98ad2antll 710 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  K  e.  Top )
10 eqid 2435 . . . . . . . 8  |-  U. K  =  U. K
1110toptopon 16990 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 189 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  K  e.  (TopOn `  U. K ) )
13 toponmax 16985 . . . . . 6  |-  ( K  e.  (TopOn `  U. K )  ->  U. K  e.  K )
1412, 13syl 16 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  U. K  e.  K )
15 simpl1 960 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  J  e.  (TopOn `  X )
)
16 toponmax 16985 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1715, 16syl 16 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  X  e.  J )
18 simpl2 961 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  L  e.  ( Fil `  Y
) )
19 filfbas 17872 . . . . . 6  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
2018, 19syl 16 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  L  e.  ( fBas `  Y
) )
21 cnpf2 17306 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  G  e.  ( ( J  CnP  K
) `  A )
)  ->  G : X
--> U. K )
2215, 12, 5, 21syl3anc 1184 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  G : X --> U. K )
23 simpl3 962 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  F : Y --> X )
24 fmco 17985 . . . . 5  |-  ( ( ( U. K  e.  K  /\  X  e.  J  /\  L  e.  ( fBas `  Y
) )  /\  ( G : X --> U. K  /\  F : Y --> X ) )  ->  ( ( U. K  FilMap  ( G  o.  F ) ) `
 L )  =  ( ( U. K  FilMap  G ) `  (
( X  FilMap  F ) `
 L ) ) )
2514, 17, 20, 22, 23, 24syl32anc 1192 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( U. K  FilMap  ( G  o.  F ) ) `  L )  =  ( ( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) )
2625oveq2d 6089 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( K  fLim  ( ( U. K  FilMap  ( G  o.  F ) ) `  L ) )  =  ( K  fLim  (
( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) ) )
27 fco 5592 . . . . 5  |-  ( ( G : X --> U. K  /\  F : Y --> X )  ->  ( G  o.  F ) : Y --> U. K )
2822, 23, 27syl2anc 643 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G  o.  F ) : Y --> U. K )
29 flfval 18014 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  Y
)  /\  ( G  o.  F ) : Y --> U. K )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( K  fLim  (
( U. K  FilMap  ( G  o.  F ) ) `  L ) ) )
3012, 18, 28, 29syl3anc 1184 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( K  fLim  (
( U. K  FilMap  ( G  o.  F ) ) `  L ) ) )
31 fmfil 17968 . . . . 5  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
3217, 20, 23, 31syl3anc 1184 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
33 flfval 18014 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
)  /\  G : X
--> U. K )  -> 
( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G )  =  ( K  fLim  (
( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) ) )
3412, 32, 22, 33syl3anc 1184 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  ( ( X  FilMap  F ) `  L ) ) `  G )  =  ( K  fLim  ( ( U. K  FilMap  G ) `
 ( ( X 
FilMap  F ) `  L
) ) ) )
3526, 30, 343eqtr4d 2477 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G ) )
367, 35eleqtrrd 2512 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  L ) `  ( G  o.  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   U.cuni 4007    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073   fBascfbas 16681   Topctop 16950  TopOnctopon 16951    CnP ccnp 17281   Filcfil 17869    FilMap cfm 17957    fLim cflim 17958    fLimf cflf 17959
This theorem is referenced by:  flfcnp2  18031  tsmsmhm  18167
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-fbas 16691  df-fg 16692  df-top 16955  df-topon 16958  df-ntr 17076  df-nei 17154  df-cnp 17284  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964
  Copyright terms: Public domain W3C validator