MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp Unicode version

Theorem flfcnp 17957
Description: A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
flfcnp  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  L ) `  ( G  o.  F ) ) )

Proof of Theorem flfcnp
StepHypRef Expression
1 simprl 733 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  A  e.  ( ( J  fLimf  L ) `  F ) )
2 flfval 17943 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
32adantr 452 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
41, 3eleqtrd 2463 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  A  e.  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
5 simprr 734 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  G  e.  ( ( J  CnP  K ) `  A ) )
6 cnpflfi 17952 . . 3  |-  ( ( A  e.  ( J 
fLim  ( ( X 
FilMap  F ) `  L
) )  /\  G  e.  ( ( J  CnP  K ) `  A ) )  ->  ( G `  A )  e.  ( ( K  fLimf  ( ( X  FilMap  F ) `  L ) ) `  G ) )
74, 5, 6syl2anc 643 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G ) )
8 cnptop2 17229 . . . . . . . 8  |-  ( G  e.  ( ( J  CnP  K ) `  A )  ->  K  e.  Top )
98ad2antll 710 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  K  e.  Top )
10 eqid 2387 . . . . . . . 8  |-  U. K  =  U. K
1110toptopon 16921 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 189 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  K  e.  (TopOn `  U. K ) )
13 toponmax 16916 . . . . . 6  |-  ( K  e.  (TopOn `  U. K )  ->  U. K  e.  K )
1412, 13syl 16 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  U. K  e.  K )
15 simpl1 960 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  J  e.  (TopOn `  X )
)
16 toponmax 16916 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1715, 16syl 16 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  X  e.  J )
18 simpl2 961 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  L  e.  ( Fil `  Y
) )
19 filfbas 17801 . . . . . 6  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
2018, 19syl 16 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  L  e.  ( fBas `  Y
) )
21 cnpf2 17236 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  G  e.  ( ( J  CnP  K
) `  A )
)  ->  G : X
--> U. K )
2215, 12, 5, 21syl3anc 1184 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  G : X --> U. K )
23 simpl3 962 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  F : Y --> X )
24 fmco 17914 . . . . 5  |-  ( ( ( U. K  e.  K  /\  X  e.  J  /\  L  e.  ( fBas `  Y
) )  /\  ( G : X --> U. K  /\  F : Y --> X ) )  ->  ( ( U. K  FilMap  ( G  o.  F ) ) `
 L )  =  ( ( U. K  FilMap  G ) `  (
( X  FilMap  F ) `
 L ) ) )
2514, 17, 20, 22, 23, 24syl32anc 1192 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( U. K  FilMap  ( G  o.  F ) ) `  L )  =  ( ( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) )
2625oveq2d 6036 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( K  fLim  ( ( U. K  FilMap  ( G  o.  F ) ) `  L ) )  =  ( K  fLim  (
( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) ) )
27 fco 5540 . . . . 5  |-  ( ( G : X --> U. K  /\  F : Y --> X )  ->  ( G  o.  F ) : Y --> U. K )
2822, 23, 27syl2anc 643 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G  o.  F ) : Y --> U. K )
29 flfval 17943 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  Y
)  /\  ( G  o.  F ) : Y --> U. K )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( K  fLim  (
( U. K  FilMap  ( G  o.  F ) ) `  L ) ) )
3012, 18, 28, 29syl3anc 1184 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( K  fLim  (
( U. K  FilMap  ( G  o.  F ) ) `  L ) ) )
31 fmfil 17897 . . . . 5  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
3217, 20, 23, 31syl3anc 1184 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
33 flfval 17943 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
)  /\  G : X
--> U. K )  -> 
( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G )  =  ( K  fLim  (
( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) ) )
3412, 32, 22, 33syl3anc 1184 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  ( ( X  FilMap  F ) `  L ) ) `  G )  =  ( K  fLim  ( ( U. K  FilMap  G ) `
 ( ( X 
FilMap  F ) `  L
) ) ) )
3526, 30, 343eqtr4d 2429 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G ) )
367, 35eleqtrrd 2464 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  L ) `  ( G  o.  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   U.cuni 3957    o. ccom 4822   -->wf 5390   ` cfv 5394  (class class class)co 6020   fBascfbas 16615   Topctop 16881  TopOnctopon 16882    CnP ccnp 17211   Filcfil 17798    FilMap cfm 17886    fLim cflim 17887    fLimf cflf 17888
This theorem is referenced by:  flfcnp2  17960  tsmsmhm  18096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-map 6956  df-fbas 16623  df-fg 16624  df-top 16886  df-topon 16889  df-ntr 17007  df-nei 17085  df-cnp 17214  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893
  Copyright terms: Public domain W3C validator