MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfssfcf Structured version   Unicode version

Theorem flfssfcf 18062
Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flfssfcf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  C_  ( ( J  fClusf  L ) `  F ) )

Proof of Theorem flfssfcf
StepHypRef Expression
1 flimfcls 18050 . . 3  |-  ( J 
fLim  ( ( X 
FilMap  F ) `  L
) )  C_  ( J  fClus  ( ( X 
FilMap  F ) `  L
) )
21a1i 11 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( J  fLim  ( ( X 
FilMap  F ) `  L
) )  C_  ( J  fClus  ( ( X 
FilMap  F ) `  L
) ) )
3 flfval 18014 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
4 fcfval 18057 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
52, 3, 43sstr4d 3383 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  C_  ( ( J  fClusf  L ) `  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    e. wcel 1725    C_ wss 3312   -->wf 5442   ` cfv 5446  (class class class)co 6073  TopOnctopon 16951   Filcfil 17869    FilMap cfm 17957    fLim cflim 17958    fLimf cflf 17959    fClus cfcls 17960    fClusf cfcf 17961
This theorem is referenced by:  cnpfcfi  18064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-fbas 16691  df-top 16955  df-topon 16958  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-fil 17870  df-flim 17963  df-flf 17964  df-fcls 17965  df-fcf 17966
  Copyright terms: Public domain W3C validator