MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flhalf Unicode version

Theorem flhalf 10954
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf  |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) ) )

Proof of Theorem flhalf
StepHypRef Expression
1 zre 10028 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  RR )
2 peano2re 8985 . . . . . . . 8  |-  ( N  e.  RR  ->  ( N  +  1 )  e.  RR )
31, 2syl 15 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  RR )
43rehalfcld 9958 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  /  2 )  e.  RR )
5 flltp1 10932 . . . . . 6  |-  ( ( ( N  +  1 )  /  2 )  e.  RR  ->  (
( N  +  1 )  /  2 )  <  ( ( |_
`  ( ( N  +  1 )  / 
2 ) )  +  1 ) )
64, 5syl 15 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  /  2 )  <  ( ( |_
`  ( ( N  +  1 )  / 
2 ) )  +  1 ) )
74flcld 10930 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  ZZ )
87zred 10117 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  RR )
9 1re 8837 . . . . . . . 8  |-  1  e.  RR
109a1i 10 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  RR )
118, 10readdcld 8862 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( |_ `  (
( N  +  1 )  /  2 ) )  +  1 )  e.  RR )
12 2rp 10359 . . . . . . 7  |-  2  e.  RR+
1312a1i 10 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  RR+ )
143, 11, 13ltdivmuld 10437 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  <  ( ( |_ `  ( ( N  +  1 )  / 
2 ) )  +  1 )  <->  ( N  +  1 )  < 
( 2  x.  (
( |_ `  (
( N  +  1 )  /  2 ) )  +  1 ) ) ) )
156, 14mpbid 201 . . . 4  |-  ( N  e.  ZZ  ->  ( N  +  1 )  <  ( 2  x.  ( ( |_ `  ( ( N  + 
1 )  /  2
) )  +  1 ) ) )
1610recnd 8861 . . . . . . 7  |-  ( N  e.  ZZ  ->  1  e.  CC )
17162timesd 9954 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  x.  1 )  =  ( 1  +  1 ) )
1817oveq2d 5874 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  ( 1  +  1 ) ) )
19 2cn 9816 . . . . . . 7  |-  2  e.  CC
2019a1i 10 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
218recnd 8861 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( N  +  1 )  / 
2 ) )  e.  CC )
2220, 21, 16adddid 8859 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( |_ `  ( ( N  +  1 )  /  2 ) )  +  1 ) )  =  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  ( 2  x.  1 ) ) )
23 2re 9815 . . . . . . . . 9  |-  2  e.  RR
2423a1i 10 . . . . . . . 8  |-  ( N  e.  ZZ  ->  2  e.  RR )
2524, 8remulcld 8863 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  RR )
2625recnd 8861 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  CC )
2726, 16, 16addassd 8857 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  1 )  +  1 )  =  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  ( 1  +  1 ) ) )
2818, 22, 273eqtr4d 2325 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( |_ `  ( ( N  +  1 )  /  2 ) )  +  1 ) )  =  ( ( ( 2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  +  1 ) )
2915, 28breqtrd 4047 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  1 )  <  ( ( ( 2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  +  1 ) )
3025, 10readdcld 8862 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  1 )  e.  RR )
311, 30, 10ltadd1d 9365 . . 3  |-  ( N  e.  ZZ  ->  ( N  <  ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  1 )  <->  ( N  +  1 )  < 
( ( ( 2  x.  ( |_ `  ( ( N  + 
1 )  /  2
) ) )  +  1 )  +  1 ) ) )
3229, 31mpbird 223 . 2  |-  ( N  e.  ZZ  ->  N  <  ( ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  +  1 ) )
33 2z 10054 . . . . 5  |-  2  e.  ZZ
3433a1i 10 . . . 4  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3534, 7zmulcld 10123 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  e.  ZZ )
36 zleltp1 10068 . . 3  |-  ( ( N  e.  ZZ  /\  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  e.  ZZ )  -> 
( N  <_  (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  <-> 
N  <  ( (
2  x.  ( |_
`  ( ( N  +  1 )  / 
2 ) ) )  +  1 ) ) )
3735, 36mpdan 649 . 2  |-  ( N  e.  ZZ  ->  ( N  <_  ( 2  x.  ( |_ `  (
( N  +  1 )  /  2 ) ) )  <->  N  <  ( ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) )  +  1 ) ) )
3832, 37mpbird 223 1  |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  ( ( N  +  1 )  / 
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   2c2 9795   ZZcz 10024   RR+crp 10354   |_cfl 10924
This theorem is referenced by:  ovolunlem1a  18855
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925
  Copyright terms: Public domain W3C validator