Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftel1 Structured version   Unicode version

Theorem fliftel1 6032
 Description: Elementhood in the relation . (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1
flift.2
flift.3
Assertion
Ref Expression
fliftel1
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem fliftel1
StepHypRef Expression
1 opex 4427 . . . . 5
2 eqid 2436 . . . . . 6
32elrnmpt1 5119 . . . . 5
41, 3mpan2 653 . . . 4
54adantl 453 . . 3
6 flift.1 . . 3
75, 6syl6eleqr 2527 . 2
8 df-br 4213 . 2
97, 8sylibr 204 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  cvv 2956  cop 3817   class class class wbr 4212   cmpt 4266   crn 4879 This theorem is referenced by:  fliftfun  6034  qliftel1  6988 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-mpt 4268  df-cnv 4886  df-dm 4888  df-rn 4889
 Copyright terms: Public domain W3C validator