Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftfund Structured version   Unicode version

Theorem fliftfund 6035
 Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1
flift.2
flift.3
fliftfun.4
fliftfun.5
fliftfund.6
Assertion
Ref Expression
fliftfund
Distinct variable groups:   ,   ,   ,   ,,   ,   ,   ,,   ,,   ,,
Allowed substitution hints:   ()   ()   ()   ()   ()

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5
213exp2 1171 . . . 4
32imp32 423 . . 3
43ralrimivva 2798 . 2
5 flift.1 . . 3
6 flift.2 . . 3
7 flift.3 . . 3
8 fliftfun.4 . . 3
9 fliftfun.5 . . 3
105, 6, 7, 8, 9fliftfun 6034 . 2
114, 10mpbird 224 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wceq 1652   wcel 1725  wral 2705  cop 3817   cmpt 4266   crn 4879   wfun 5448 This theorem is referenced by:  cygznlem2a  16848  pi1xfrf  19078  pi1cof  19084 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462
 Copyright terms: Public domain W3C validator