MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Unicode version

Theorem flimcf 17677
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( J  C_  K  <->  A. f  e.  ( Fil `  X ) ( K  fLim  f
)  C_  ( J  fLim  f ) ) )
Distinct variable groups:    f, J    f, K    f, X

Proof of Theorem flimcf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 734 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  J  e.  (TopOn `  X )
)
2 simprl 732 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  f  e.  ( Fil `  X
) )
3 simplr 731 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  J  C_  K )
4 flimss1 17668 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  J  C_  K
)  ->  ( K  fLim  f )  C_  ( J  fLim  f ) )
51, 2, 3, 4syl3anc 1182 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  ( K  fLim  f )  C_  ( J  fLim  f ) )
6 simprr 733 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  x  e.  ( K  fLim  f
) )
75, 6sseldd 3181 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  x  e.  ( J  fLim  f
) )
87expr 598 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  f  e.  ( Fil `  X ) )  -> 
( x  e.  ( K  fLim  f )  ->  x  e.  ( J 
fLim  f ) ) )
98ssrdv 3185 . . 3  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  f  e.  ( Fil `  X ) )  -> 
( K  fLim  f
)  C_  ( J  fLim  f ) )
109ralrimiva 2626 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  J  C_  K
)  ->  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )
11 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  K  e.  (TopOn `  X
) )
12 simplll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  J  e.  (TopOn `  X
) )
13 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  J )
14 toponss 16667 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
1512, 13, 14syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  C_  X )
16 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  x )
1715, 16sseldd 3181 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  X )
1817snssd 3760 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  { y }  C_  X )
19 snnzg 3743 . . . . . . . . . . . . 13  |-  ( y  e.  X  ->  { y }  =/=  (/) )
2017, 19syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  { y }  =/=  (/) )
21 neifil 17575 . . . . . . . . . . . 12  |-  ( ( K  e.  (TopOn `  X )  /\  {
y }  C_  X  /\  { y }  =/=  (/) )  ->  ( ( nei `  K ) `  { y } )  e.  ( Fil `  X
) )
2211, 18, 20, 21syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( ( nei `  K
) `  { y } )  e.  ( Fil `  X ) )
23 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  A. f  e.  ( Fil `  X ) ( K  fLim  f )  C_  ( J  fLim  f
) )
24 oveq2 5866 . . . . . . . . . . . . 13  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( K  fLim  f
)  =  ( K 
fLim  ( ( nei `  K ) `  {
y } ) ) )
25 oveq2 5866 . . . . . . . . . . . . 13  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( J  fLim  f
)  =  ( J 
fLim  ( ( nei `  K ) `  {
y } ) ) )
2624, 25sseq12d 3207 . . . . . . . . . . . 12  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( ( K  fLim  f )  C_  ( J  fLim  f )  <->  ( K  fLim  ( ( nei `  K
) `  { y } ) )  C_  ( J  fLim  ( ( nei `  K ) `
 { y } ) ) ) )
2726rspcv 2880 . . . . . . . . . . 11  |-  ( ( ( nei `  K
) `  { y } )  e.  ( Fil `  X )  ->  ( A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f )  ->  ( K  fLim  ( ( nei `  K ) `  {
y } ) ) 
C_  ( J  fLim  ( ( nei `  K
) `  { y } ) ) ) )
2822, 23, 27sylc 56 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( K  fLim  (
( nei `  K
) `  { y } ) )  C_  ( J  fLim  ( ( nei `  K ) `
 { y } ) ) )
29 neiflim 17669 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  X )  /\  y  e.  X )  ->  y  e.  ( K  fLim  (
( nei `  K
) `  { y } ) ) )
3011, 17, 29syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  ( K 
fLim  ( ( nei `  K ) `  {
y } ) ) )
3128, 30sseldd 3181 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  ( J 
fLim  ( ( nei `  K ) `  {
y } ) ) )
32 flimneiss 17661 . . . . . . . . 9  |-  ( y  e.  ( J  fLim  ( ( nei `  K
) `  { y } ) )  -> 
( ( nei `  J
) `  { y } )  C_  (
( nei `  K
) `  { y } ) )
3331, 32syl 15 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( ( nei `  J
) `  { y } )  C_  (
( nei `  K
) `  { y } ) )
34 topontop 16664 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3512, 34syl 15 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  J  e.  Top )
36 opnneip 16856 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  x  e.  J  /\  y  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { y } ) )
3735, 13, 16, 36syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  ( ( nei `  J ) `  { y } ) )
3833, 37sseldd 3181 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  ( ( nei `  K ) `  { y } ) )
3938anassrs 629 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  /\  y  e.  x
)  ->  x  e.  ( ( nei `  K
) `  { y } ) )
4039ralrimiva 2626 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) )
41 simpllr 735 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  K  e.  (TopOn `  X )
)
42 topontop 16664 . . . . . 6  |-  ( K  e.  (TopOn `  X
)  ->  K  e.  Top )
43 opnnei 16857 . . . . . 6  |-  ( K  e.  Top  ->  (
x  e.  K  <->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) ) )
4441, 42, 433syl 18 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  (
x  e.  K  <->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) ) )
4540, 44mpbird 223 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  x  e.  K )
4645ex 423 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  -> 
( x  e.  J  ->  x  e.  K ) )
4746ssrdv 3185 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  ->  J  C_  K )
4810, 47impbida 805 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( J  C_  K  <->  A. f  e.  ( Fil `  X ) ( K  fLim  f
)  C_  ( J  fLim  f ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    C_ wss 3152   (/)c0 3455   {csn 3640   ` cfv 5255  (class class class)co 5858   Topctop 16631  TopOnctopon 16632   neicnei 16834   Filcfil 17540    fLim cflim 17629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-top 16636  df-topon 16639  df-ntr 16757  df-nei 16835  df-fbas 17520  df-fil 17541  df-flim 17634
  Copyright terms: Public domain W3C validator