MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclsi Structured version   Unicode version

Theorem flimclsi 18041
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimclsi  |-  ( S  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  S )
)

Proof of Theorem flimclsi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2442 . . . . . . . 8  |-  U. J  =  U. J
21flimfil 18032 . . . . . . 7  |-  ( x  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
32ad2antlr 709 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  F  e.  ( Fil ` 
U. J ) )
4 flimnei 18030 . . . . . . 7  |-  ( ( x  e.  ( J 
fLim  F )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
y  e.  F )
54adantll 696 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
y  e.  F )
6 simpll 732 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  S  e.  F )
7 filinn0 17923 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. J )  /\  y  e.  F  /\  S  e.  F )  ->  ( y  i^i  S
)  =/=  (/) )
83, 5, 6, 7syl3anc 1185 . . . . 5  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
( y  i^i  S
)  =/=  (/) )
98ralrimiva 2795 . . . 4  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  A. y  e.  (
( nei `  J
) `  { x } ) ( y  i^i  S )  =/=  (/) )
10 flimtop 18028 . . . . . 6  |-  ( x  e.  ( J  fLim  F )  ->  J  e.  Top )
1110adantl 454 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  J  e.  Top )
12 filelss 17915 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. J )  /\  S  e.  F )  ->  S  C_  U. J )
1312ancoms 441 . . . . . 6  |-  ( ( S  e.  F  /\  F  e.  ( Fil ` 
U. J ) )  ->  S  C_  U. J
)
142, 13sylan2 462 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  S  C_  U. J )
151flimelbas 18031 . . . . . 6  |-  ( x  e.  ( J  fLim  F )  ->  x  e.  U. J )
1615adantl 454 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  x  e.  U. J )
171neindisj2 17218 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  x  e.  U. J )  ->  ( x  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  ( ( nei `  J ) `
 { x }
) ( y  i^i 
S )  =/=  (/) ) )
1811, 14, 16, 17syl3anc 1185 . . . 4  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  -> 
( x  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  ( ( nei `  J ) `
 { x }
) ( y  i^i 
S )  =/=  (/) ) )
199, 18mpbird 225 . . 3  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  x  e.  ( ( cls `  J ) `  S ) )
2019ex 425 . 2  |-  ( S  e.  F  ->  (
x  e.  ( J 
fLim  F )  ->  x  e.  ( ( cls `  J
) `  S )
) )
2120ssrdv 3340 1  |-  ( S  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1727    =/= wne 2605   A.wral 2711    i^i cin 3305    C_ wss 3306   (/)c0 3613   {csn 3838   U.cuni 4039   ` cfv 5483  (class class class)co 6110   Topctop 16989   clsccl 17113   neicnei 17192   Filcfil 17908    fLim cflim 17997
This theorem is referenced by:  flimcls  18048  flimfcls  18089  cnextcn  18129  cmetss  19298  minveclem4  19364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-fbas 16730  df-top 16994  df-cld 17114  df-ntr 17115  df-cls 17116  df-nei 17193  df-fil 17909  df-flim 18002
  Copyright terms: Public domain W3C validator