MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclsi Unicode version

Theorem flimclsi 17963
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimclsi  |-  ( S  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  S )
)

Proof of Theorem flimclsi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . . . . 8  |-  U. J  =  U. J
21flimfil 17954 . . . . . . 7  |-  ( x  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
32ad2antlr 708 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  F  e.  ( Fil ` 
U. J ) )
4 flimnei 17952 . . . . . . 7  |-  ( ( x  e.  ( J 
fLim  F )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
y  e.  F )
54adantll 695 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
y  e.  F )
6 simpll 731 . . . . . 6  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  S  e.  F )
7 filinn0 17845 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. J )  /\  y  e.  F  /\  S  e.  F )  ->  ( y  i^i  S
)  =/=  (/) )
83, 5, 6, 7syl3anc 1184 . . . . 5  |-  ( ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  /\  y  e.  ( ( nei `  J
) `  { x } ) )  -> 
( y  i^i  S
)  =/=  (/) )
98ralrimiva 2749 . . . 4  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  A. y  e.  (
( nei `  J
) `  { x } ) ( y  i^i  S )  =/=  (/) )
10 flimtop 17950 . . . . . 6  |-  ( x  e.  ( J  fLim  F )  ->  J  e.  Top )
1110adantl 453 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  J  e.  Top )
12 filelss 17837 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. J )  /\  S  e.  F )  ->  S  C_  U. J )
1312ancoms 440 . . . . . 6  |-  ( ( S  e.  F  /\  F  e.  ( Fil ` 
U. J ) )  ->  S  C_  U. J
)
142, 13sylan2 461 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  S  C_  U. J )
151flimelbas 17953 . . . . . 6  |-  ( x  e.  ( J  fLim  F )  ->  x  e.  U. J )
1615adantl 453 . . . . 5  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  x  e.  U. J )
171neindisj2 17142 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  x  e.  U. J )  ->  ( x  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  ( ( nei `  J ) `
 { x }
) ( y  i^i 
S )  =/=  (/) ) )
1811, 14, 16, 17syl3anc 1184 . . . 4  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  -> 
( x  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  ( ( nei `  J ) `
 { x }
) ( y  i^i 
S )  =/=  (/) ) )
199, 18mpbird 224 . . 3  |-  ( ( S  e.  F  /\  x  e.  ( J  fLim  F ) )  ->  x  e.  ( ( cls `  J ) `  S ) )
2019ex 424 . 2  |-  ( S  e.  F  ->  (
x  e.  ( J 
fLim  F )  ->  x  e.  ( ( cls `  J
) `  S )
) )
2120ssrdv 3314 1  |-  ( S  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721    =/= wne 2567   A.wral 2666    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   U.cuni 3975   ` cfv 5413  (class class class)co 6040   Topctop 16913   clsccl 17037   neicnei 17116   Filcfil 17830    fLim cflim 17919
This theorem is referenced by:  flimcls  17970  flimfcls  18011  cnextcn  18051  cmetss  19220  minveclem4  19286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-fbas 16654  df-top 16918  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-fil 17831  df-flim 17924
  Copyright terms: Public domain W3C validator