MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclslem Unicode version

Theorem flimclslem 17679
Description: Lemma for flimcls 17680. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcls.2  |-  F  =  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
Assertion
Ref Expression
flimclslem  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F  e.  ( Fil `  X
)  /\  S  e.  F  /\  A  e.  ( J  fLim  F )
) )

Proof of Theorem flimclslem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimcls.2 . . 3  |-  F  =  ( X filGen ( fi
`  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
2 topontop 16664 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
323ad2ant1 976 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  J  e.  Top )
4 eqid 2283 . . . . . . . . 9  |-  U. J  =  U. J
54neisspw 16844 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( nei `  J
) `  { A } )  C_  ~P U. J )
63, 5syl 15 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  C_  ~P U. J )
7 toponuni 16665 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
873ad2ant1 976 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  X  =  U. J )
98pweqd 3630 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ~P X  =  ~P U. J )
106, 9sseqtr4d 3215 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  C_  ~P X )
11 toponmax 16666 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
12 elpw2g 4174 . . . . . . . . . 10  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1311, 12syl 15 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  ( S  e.  ~P X  <->  S  C_  X
) )
1413biimpar 471 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  e.  ~P X )
15143adant3 975 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  ~P X )
1615snssd 3760 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { S }  C_  ~P X )
1710, 16unssd 3351 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( nei `  J
) `  { A } )  u.  { S } )  C_  ~P X )
18 ssun2 3339 . . . . . 6  |-  { S }  C_  ( ( ( nei `  J ) `
 { A }
)  u.  { S } )
19 simp2 956 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  C_  X
)
20113ad2ant1 976 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  X  e.  J )
21 ssexg 4160 . . . . . . . 8  |-  ( ( S  C_  X  /\  X  e.  J )  ->  S  e.  _V )
2219, 20, 21syl2anc 642 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  _V )
23 snnzg 3743 . . . . . . 7  |-  ( S  e.  _V  ->  { S }  =/=  (/) )
2422, 23syl 15 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { S }  =/=  (/) )
25 ssn0 3487 . . . . . 6  |-  ( ( { S }  C_  ( ( ( nei `  J ) `  { A } )  u.  { S } )  /\  { S }  =/=  (/) )  -> 
( ( ( nei `  J ) `  { A } )  u.  { S } )  =/=  (/) )
2618, 24, 25sylancr 644 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( nei `  J
) `  { A } )  u.  { S } )  =/=  (/) )
2719, 8sseqtrd 3214 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  C_  U. J
)
28 simp3 957 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  ( ( cls `  J
) `  S )
)
294neindisj 16854 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  ( A  e.  ( ( cls `  J
) `  S )  /\  x  e.  (
( nei `  J
) `  { A } ) ) )  ->  ( x  i^i 
S )  =/=  (/) )
3029expr 598 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( x  e.  ( ( nei `  J
) `  { A } )  ->  (
x  i^i  S )  =/=  (/) ) )
313, 27, 28, 30syl21anc 1181 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( x  e.  ( ( nei `  J
) `  { A } )  ->  (
x  i^i  S )  =/=  (/) ) )
3231imp 418 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  x  e.  ( ( nei `  J
) `  { A } ) )  -> 
( x  i^i  S
)  =/=  (/) )
33 elsni 3664 . . . . . . . . . . 11  |-  ( y  e.  { S }  ->  y  =  S )
3433ineq2d 3370 . . . . . . . . . 10  |-  ( y  e.  { S }  ->  ( x  i^i  y
)  =  ( x  i^i  S ) )
3534neeq1d 2459 . . . . . . . . 9  |-  ( y  e.  { S }  ->  ( ( x  i^i  y )  =/=  (/)  <->  ( x  i^i  S )  =/=  (/) ) )
3632, 35syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  x  e.  ( ( nei `  J
) `  { A } ) )  -> 
( y  e.  { S }  ->  ( x  i^i  y )  =/=  (/) ) )
3736ralrimiv 2625 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  x  e.  ( ( nei `  J
) `  { A } ) )  ->  A. y  e.  { S }  ( x  i^i  y )  =/=  (/) )
3837ralrimiva 2626 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A. x  e.  ( ( nei `  J
) `  { A } ) A. y  e.  { S }  (
x  i^i  y )  =/=  (/) )
39 simp1 955 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  J  e.  (TopOn `  X ) )
404clsss3 16796 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
413, 27, 40syl2anc 642 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  S )  C_  U. J
)
4241, 28sseldd 3181 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  U. J )
4342, 8eleqtrrd 2360 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  X )
4443snssd 3760 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { A }  C_  X )
45 snnzg 3743 . . . . . . . . . 10  |-  ( A  e.  ( ( cls `  J ) `  S
)  ->  { A }  =/=  (/) )
46453ad2ant3 978 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { A }  =/=  (/) )
47 neifil 17575 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
4839, 44, 46, 47syl3anc 1182 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  e.  ( Fil `  X
) )
49 filfbas 17543 . . . . . . . 8  |-  ( ( ( nei `  J
) `  { A } )  e.  ( Fil `  X )  ->  ( ( nei `  J ) `  { A } )  e.  (
fBas `  X )
)
5048, 49syl 15 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  e.  ( fBas `  X
) )
51 ne0i 3461 . . . . . . . . . . 11  |-  ( A  e.  ( ( cls `  J ) `  S
)  ->  ( ( cls `  J ) `  S )  =/=  (/) )
52513ad2ant3 978 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  S )  =/=  (/) )
53 cls0 16817 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (
( cls `  J
) `  (/) )  =  (/) )
543, 53syl 15 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  (/) )  =  (/) )
5552, 54neeqtrrd 2470 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( cls `  J ) `  S )  =/=  (
( cls `  J
) `  (/) ) )
56 fveq2 5525 . . . . . . . . . 10  |-  ( S  =  (/)  ->  ( ( cls `  J ) `
 S )  =  ( ( cls `  J
) `  (/) ) )
5756necon3i 2485 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  =/=  ( ( cls `  J
) `  (/) )  ->  S  =/=  (/) )
5855, 57syl 15 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  =/=  (/) )
59 snfbas 17561 . . . . . . . 8  |-  ( ( S  C_  X  /\  S  =/=  (/)  /\  X  e.  J )  ->  { S }  e.  ( fBas `  X ) )
6019, 58, 20, 59syl3anc 1182 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  { S }  e.  ( fBas `  X ) )
61 fbunfip 17564 . . . . . . 7  |-  ( ( ( ( nei `  J
) `  { A } )  e.  (
fBas `  X )  /\  { S }  e.  ( fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  <->  A. x  e.  ( ( nei `  J
) `  { A } ) A. y  e.  { S }  (
x  i^i  y )  =/=  (/) ) )
6250, 60, 61syl2anc 642 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  <->  A. x  e.  ( ( nei `  J
) `  { A } ) A. y  e.  { S }  (
x  i^i  y )  =/=  (/) ) )
6338, 62mpbird 223 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  -.  (/)  e.  ( fi `  ( ( ( nei `  J
) `  { A } )  u.  { S } ) ) )
64 fsubbas 17562 . . . . . 6  |-  ( X  e.  J  ->  (
( fi `  (
( ( nei `  J
) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { A } )  u.  { S } )  C_  ~P X  /\  ( ( ( nei `  J ) `
 { A }
)  u.  { S } )  =/=  (/)  /\  -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) ) )
6520, 64syl 15 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( fi `  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) )  e.  ( fBas `  X
)  <->  ( ( ( ( nei `  J
) `  { A } )  u.  { S } )  C_  ~P X  /\  ( ( ( nei `  J ) `
 { A }
)  u.  { S } )  =/=  (/)  /\  -.  (/) 
e.  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) ) )
6617, 26, 63, 65mpbir3and 1135 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
) )
67 fgcl 17573 . . . 4  |-  ( ( fi `  ( ( ( nei `  J
) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
)  ->  ( X filGen ( fi `  (
( ( nei `  J
) `  { A } )  u.  { S } ) ) )  e.  ( Fil `  X
) )
6866, 67syl 15 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( X filGen ( fi `  (
( ( nei `  J
) `  { A } )  u.  { S } ) ) )  e.  ( Fil `  X
) )
691, 68syl5eqel 2367 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  F  e.  ( Fil `  X ) )
70 fvex 5539 . . . . . 6  |-  ( ( nei `  J ) `
 { A }
)  e.  _V
71 snex 4216 . . . . . 6  |-  { S }  e.  _V
7270, 71unex 4518 . . . . 5  |-  ( ( ( nei `  J
) `  { A } )  u.  { S } )  e.  _V
73 ssfii 7172 . . . . 5  |-  ( ( ( ( nei `  J
) `  { A } )  u.  { S } )  e.  _V  ->  ( ( ( nei `  J ) `  { A } )  u.  { S } )  C_  ( fi `  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
7472, 73ax-mp 8 . . . 4  |-  ( ( ( nei `  J
) `  { A } )  u.  { S } )  C_  ( fi `  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) )
75 ssfg 17567 . . . . . 6  |-  ( ( fi `  ( ( ( nei `  J
) `  { A } )  u.  { S } ) )  e.  ( fBas `  X
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) )
7666, 75syl 15 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  C_  ( X filGen ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) ) ) )
7776, 1syl6sseqr 3225 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( fi `  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )  C_  F )
7874, 77syl5ss 3190 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( nei `  J
) `  { A } )  u.  { S } )  C_  F
)
79 snssg 3754 . . . . 5  |-  ( S  e.  _V  ->  ( S  e.  ( (
( nei `  J
) `  { A } )  u.  { S } )  <->  { S }  C_  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
8022, 79syl 15 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( S  e.  ( ( ( nei `  J ) `  { A } )  u.  { S } )  <->  { S }  C_  ( ( ( nei `  J ) `
 { A }
)  u.  { S } ) ) )
8118, 80mpbiri 224 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  ( ( ( nei `  J ) `  { A } )  u.  { S } ) )
8278, 81sseldd 3181 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  S  e.  F )
83 ssun1 3338 . . . 4  |-  ( ( nei `  J ) `
 { A }
)  C_  ( (
( nei `  J
) `  { A } )  u.  { S } )
8483, 78syl5ss 3190 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( nei `  J ) `  { A } )  C_  F )
85 elflim 17666 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  F
) ) )
8639, 69, 85syl2anc 642 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( A  e.  ( J  fLim  F
)  <->  ( A  e.  X  /\  ( ( nei `  J ) `
 { A }
)  C_  F )
) )
8743, 84, 86mpbir2and 888 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  A  e.  ( J  fLim  F ) )
8869, 82, 873jca 1132 1  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F  e.  ( Fil `  X
)  /\  S  e.  F  /\  A  e.  ( J  fLim  F )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   ` cfv 5255  (class class class)co 5858   ficfi 7164   Topctop 16631  TopOnctopon 16632   clsccl 16755   neicnei 16834   fBascfbas 17518   filGencfg 17519   Filcfil 17540    fLim cflim 17629
This theorem is referenced by:  flimcls  17680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-top 16636  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-fbas 17520  df-fg 17521  df-fil 17541  df-flim 17634
  Copyright terms: Public domain W3C validator