MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfcls Unicode version

Theorem flimfcls 17737
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimfcls  |-  ( J 
fLim  F )  C_  ( J  fClus  F )

Proof of Theorem flimfcls
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 17676 . . 3  |-  ( a  e.  ( J  fLim  F )  ->  J  e.  Top )
2 eqid 2296 . . . 4  |-  U. J  =  U. J
32flimfil 17680 . . 3  |-  ( a  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
4 flimclsi 17689 . . . . . 6  |-  ( x  e.  F  ->  ( J  fLim  F )  C_  ( ( cls `  J
) `  x )
)
54sseld 3192 . . . . 5  |-  ( x  e.  F  ->  (
a  e.  ( J 
fLim  F )  ->  a  e.  ( ( cls `  J
) `  x )
) )
65com12 27 . . . 4  |-  ( a  e.  ( J  fLim  F )  ->  ( x  e.  F  ->  a  e.  ( ( cls `  J
) `  x )
) )
76ralrimiv 2638 . . 3  |-  ( a  e.  ( J  fLim  F )  ->  A. x  e.  F  a  e.  ( ( cls `  J
) `  x )
)
82isfcls 17720 . . 3  |-  ( a  e.  ( J  fClus  F )  <->  ( J  e. 
Top  /\  F  e.  ( Fil `  U. J
)  /\  A. x  e.  F  a  e.  ( ( cls `  J
) `  x )
) )
91, 3, 7, 8syl3anbrc 1136 . 2  |-  ( a  e.  ( J  fLim  F )  ->  a  e.  ( J  fClus  F ) )
109ssriv 3197 1  |-  ( J 
fLim  F )  C_  ( J  fClus  F )
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   A.wral 2556    C_ wss 3165   U.cuni 3843   ` cfv 5271  (class class class)co 5874   Topctop 16647   clsccl 16771   Filcfil 17556    fLim cflim 17645    fClus cfcls 17647
This theorem is referenced by:  fclsfnflim  17738  flimfnfcls  17739  uffclsflim  17742  flfssfcf  17749  cnpfcf  17752  cfilfcls  18716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-top 16652  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-fbas 17536  df-fil 17557  df-flim 17650  df-fcls 17652
  Copyright terms: Public domain W3C validator