MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimopn Structured version   Unicode version

Theorem flimopn 17997
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimopn  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
Distinct variable groups:    x, A    x, F    x, J    x, X

Proof of Theorem flimopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elflim 17993 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  F
) ) )
2 dfss3 3330 . . . 4  |-  ( ( ( nei `  J
) `  { A } )  C_  F  <->  A. y  e.  ( ( nei `  J ) `
 { A }
) y  e.  F
)
3 topontop 16981 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
43ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  J  e.  Top )
5 opnneip 17173 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  e.  J  /\  A  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { A }
) )
653expb 1154 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  A  e.  x
) )  ->  x  e.  ( ( nei `  J
) `  { A } ) )
74, 6sylan 458 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  ( ( nei `  J ) `  { A } ) )
8 eleq1 2495 . . . . . . . . . 10  |-  ( y  =  x  ->  (
y  e.  F  <->  x  e.  F ) )
98rspcv 3040 . . . . . . . . 9  |-  ( x  e.  ( ( nei `  J ) `  { A } )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  ->  x  e.  F ) )
107, 9syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
( A. y  e.  ( ( nei `  J
) `  { A } ) y  e.  F  ->  x  e.  F ) )
1110expr 599 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  ( A  e.  x  ->  ( A. y  e.  ( ( nei `  J
) `  { A } ) y  e.  F  ->  x  e.  F ) ) )
1211com23 74 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  ->  ( A  e.  x  ->  x  e.  F ) ) )
1312ralrimdva 2788 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  ->  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) )
14 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  e.  ( ( nei `  J ) `
 { A }
) )
153ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  Top )
16 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  X )
17 toponuni 16982 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1817ad3antrrr 711 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  X  =  U. J )
1916, 18eleqtrd 2511 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  U. J )
2019snssd 3935 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
21 eqid 2435 . . . . . . . . . . . . 13  |-  U. J  =  U. J
2221neii1 17160 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  y  e.  ( ( nei `  J ) `  { A } ) )  ->  y  C_  U. J
)
234, 22sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  C_  U. J )
2421neiint 17158 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  { A }  C_  U. J  /\  y  C_  U. J
)  ->  ( y  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  y
) ) )
2515, 20, 23, 24syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( y  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  y
) ) )
2614, 25mpbid 202 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  (
( int `  J
) `  y )
)
27 snssg 3924 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( A  e.  ( ( int `  J ) `  y )  <->  { A }  C_  ( ( int `  J ) `  y
) ) )
2827ad2antlr 708 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A  e.  ( ( int `  J
) `  y )  <->  { A }  C_  (
( int `  J
) `  y )
) )
2926, 28mpbird 224 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  ( ( int `  J ) `  y ) )
3021ntropn 17103 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  y  C_  U. J )  ->  ( ( int `  J ) `  y
)  e.  J )
3115, 23, 30syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  y )  e.  J )
32 eleq2 2496 . . . . . . . . . . 11  |-  ( x  =  ( ( int `  J ) `  y
)  ->  ( A  e.  x  <->  A  e.  (
( int `  J
) `  y )
) )
33 eleq1 2495 . . . . . . . . . . 11  |-  ( x  =  ( ( int `  J ) `  y
)  ->  ( x  e.  F  <->  ( ( int `  J ) `  y
)  e.  F ) )
3432, 33imbi12d 312 . . . . . . . . . 10  |-  ( x  =  ( ( int `  J ) `  y
)  ->  ( ( A  e.  x  ->  x  e.  F )  <->  ( A  e.  ( ( int `  J
) `  y )  ->  ( ( int `  J
) `  y )  e.  F ) ) )
3534rspcv 3040 . . . . . . . . 9  |-  ( ( ( int `  J
) `  y )  e.  J  ->  ( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  -> 
( A  e.  ( ( int `  J
) `  y )  ->  ( ( int `  J
) `  y )  e.  F ) ) )
3631, 35syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  ( A  e.  ( ( int `  J ) `  y )  ->  (
( int `  J
) `  y )  e.  F ) ) )
3729, 36mpid 39 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  (
( int `  J
) `  y )  e.  F ) )
38 simpllr 736 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  F  e.  ( Fil `  X ) )
3921ntrss2 17111 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  C_  U. J )  ->  ( ( int `  J ) `  y
)  C_  y )
4015, 23, 39syl2anc 643 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  y )  C_  y )
4123, 18sseqtr4d 3377 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  C_  X )
42 filss 17875 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
( ( int `  J
) `  y )  e.  F  /\  y  C_  X  /\  ( ( int `  J ) `
 y )  C_  y ) )  -> 
y  e.  F )
43423exp2 1171 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  ( (
( int `  J
) `  y )  e.  F  ->  ( y 
C_  X  ->  (
( ( int `  J
) `  y )  C_  y  ->  y  e.  F ) ) ) )
4443com24 83 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  ( (
( int `  J
) `  y )  C_  y  ->  ( y  C_  X  ->  ( (
( int `  J
) `  y )  e.  F  ->  y  e.  F ) ) ) )
4538, 40, 41, 44syl3c 59 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( ( int `  J ) `  y
)  e.  F  -> 
y  e.  F ) )
4637, 45syld 42 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  y  e.  F ) )
4746ralrimdva 2788 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  A. y  e.  ( ( nei `  J
) `  { A } ) y  e.  F ) )
4813, 47impbid 184 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  <->  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) )
492, 48syl5bb 249 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  (
( ( nei `  J
) `  { A } )  C_  F  <->  A. x  e.  J  ( A  e.  x  ->  x  e.  F )
) )
5049pm5.32da 623 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( A  e.  X  /\  ( ( nei `  J
) `  { A } )  C_  F
)  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
511, 50bitrd 245 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697    C_ wss 3312   {csn 3806   U.cuni 4007   ` cfv 5446  (class class class)co 6073   Topctop 16948  TopOnctopon 16949   intcnt 17071   neicnei 17151   Filcfil 17867    fLim cflim 17956
This theorem is referenced by:  fbflim  17998  flimrest  18005  flimsncls  18008  isflf  18015  cnpflfi  18021  flimfnfcls  18050  alexsublem  18065  cfilfcls  19217  iscmet3lem2  19235
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-fbas 16689  df-top 16953  df-topon 16956  df-ntr 17074  df-nei 17152  df-fil 17868  df-flim 17961
  Copyright terms: Public domain W3C validator