MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimtop Structured version   Unicode version

Theorem flimtop 18002
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimtop  |-  ( A  e.  ( J  fLim  F )  ->  J  e.  Top )

Proof of Theorem flimtop
StepHypRef Expression
1 eqid 2438 . . . 4  |-  U. J  =  U. J
21elflim2 18001 . . 3  |-  ( A  e.  ( J  fLim  F )  <->  ( ( J  e.  Top  /\  F  e.  U. ran  Fil  /\  F  C_  ~P U. J
)  /\  ( A  e.  U. J  /\  (
( nei `  J
) `  { A } )  C_  F
) ) )
32simplbi 448 . 2  |-  ( A  e.  ( J  fLim  F )  ->  ( J  e.  Top  /\  F  e. 
U. ran  Fil  /\  F  C_ 
~P U. J ) )
43simp1d 970 1  |-  ( A  e.  ( J  fLim  F )  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    e. wcel 1726    C_ wss 3322   ~Pcpw 3801   {csn 3816   U.cuni 4017   ran crn 4882   ` cfv 5457  (class class class)co 6084   Topctop 16963   neicnei 17166   Filcfil 17882    fLim cflim 17971
This theorem is referenced by:  flimfil  18006  flimtopon  18007  flimss1  18010  flimclsi  18015  hausflimlem  18016  flimsncls  18023  cnpflfi  18036  flimfcls  18063  flimfnfcls  18065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-top 16968  df-flim 17976
  Copyright terms: Public domain W3C validator