MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Unicode version

Theorem fmfnfmlem4 17668
Description: Lemma for fmfnfm 17669. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
fmfnfm.l  |-  ( ph  ->  L  e.  ( Fil `  X ) )
fmfnfm.f  |-  ( ph  ->  F : Y --> X )
fmfnfm.fm  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
Assertion
Ref Expression
fmfnfmlem4  |-  ( ph  ->  ( t  e.  L  <->  ( t  C_  X  /\  E. s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ( F "
s )  C_  t
) ) )
Distinct variable groups:    t, s, x, B    F, s, t, x    L, s, t, x    ph, s, t, x    X, s, t, x    Y, s, t, x

Proof of Theorem fmfnfmlem4
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4  |-  ( ph  ->  L  e.  ( Fil `  X ) )
2 filelss 17563 . . . . 5  |-  ( ( L  e.  ( Fil `  X )  /\  t  e.  L )  ->  t  C_  X )
32ex 423 . . . 4  |-  ( L  e.  ( Fil `  X
)  ->  ( t  e.  L  ->  t  C_  X ) )
41, 3syl 15 . . 3  |-  ( ph  ->  ( t  e.  L  ->  t  C_  X )
)
5 fmfnfm.b . . . . . . . . 9  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
6 mptexg 5761 . . . . . . . . . . 11  |-  ( L  e.  ( Fil `  X
)  ->  ( x  e.  L  |->  ( `' F " x ) )  e.  _V )
7 rnexg 4956 . . . . . . . . . . 11  |-  ( ( x  e.  L  |->  ( `' F " x ) )  e.  _V  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )
86, 7syl 15 . . . . . . . . . 10  |-  ( L  e.  ( Fil `  X
)  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  e.  _V )
91, 8syl 15 . . . . . . . . 9  |-  ( ph  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  e. 
_V )
10 unexg 4537 . . . . . . . . 9  |-  ( ( B  e.  ( fBas `  Y )  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  e.  _V )
115, 9, 10syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  e.  _V )
12 ssun2 3352 . . . . . . . . 9  |-  ran  (
x  e.  L  |->  ( `' F " x ) )  C_  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )
13 ssfii 7188 . . . . . . . . 9  |-  ( ( B  u.  ran  (
x  e.  L  |->  ( `' F " x ) ) )  e.  _V  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) 
C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
1412, 13syl5ss 3203 . . . . . . . 8  |-  ( ( B  u.  ran  (
x  e.  L  |->  ( `' F " x ) ) )  e.  _V  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
1511, 14syl 15 . . . . . . 7  |-  ( ph  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
1615adantr 451 . . . . . 6  |-  ( (
ph  /\  t  e.  L )  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
17 eqid 2296 . . . . . . . . 9  |-  ( `' F " t )  =  ( `' F " t )
18 imaeq2 5024 . . . . . . . . . . 11  |-  ( x  =  t  ->  ( `' F " x )  =  ( `' F " t ) )
1918eqeq2d 2307 . . . . . . . . . 10  |-  ( x  =  t  ->  (
( `' F "
t )  =  ( `' F " x )  <-> 
( `' F "
t )  =  ( `' F " t ) ) )
2019rspcev 2897 . . . . . . . . 9  |-  ( ( t  e.  L  /\  ( `' F " t )  =  ( `' F " t ) )  ->  E. x  e.  L  ( `' F " t )  =  ( `' F " x ) )
2117, 20mpan2 652 . . . . . . . 8  |-  ( t  e.  L  ->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) )
2221adantl 452 . . . . . . 7  |-  ( (
ph  /\  t  e.  L )  ->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) )
23 cnvimass 5049 . . . . . . . . . . 11  |-  ( `' F " t ) 
C_  dom  F
24 fmfnfm.f . . . . . . . . . . . 12  |-  ( ph  ->  F : Y --> X )
25 fdm 5409 . . . . . . . . . . . 12  |-  ( F : Y --> X  ->  dom  F  =  Y )
2624, 25syl 15 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  Y )
2723, 26syl5sseq 3239 . . . . . . . . . 10  |-  ( ph  ->  ( `' F "
t )  C_  Y
)
28 elfvdm 5570 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
295, 28syl 15 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  dom  fBas )
30 ssexg 4176 . . . . . . . . . 10  |-  ( ( ( `' F "
t )  C_  Y  /\  Y  e.  dom  fBas )  ->  ( `' F " t )  e. 
_V )
3127, 29, 30syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
t )  e.  _V )
3231adantr 451 . . . . . . . 8  |-  ( (
ph  /\  t  e.  L )  ->  ( `' F " t )  e.  _V )
33 eqid 2296 . . . . . . . . 9  |-  ( x  e.  L  |->  ( `' F " x ) )  =  ( x  e.  L  |->  ( `' F " x ) )
3433elrnmpt 4942 . . . . . . . 8  |-  ( ( `' F " t )  e.  _V  ->  (
( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
3532, 34syl 15 . . . . . . 7  |-  ( (
ph  /\  t  e.  L )  ->  (
( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
3622, 35mpbird 223 . . . . . 6  |-  ( (
ph  /\  t  e.  L )  ->  ( `' F " t )  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) )
3716, 36sseldd 3194 . . . . 5  |-  ( (
ph  /\  t  e.  L )  ->  ( `' F " t )  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
38 ffun 5407 . . . . . . . 8  |-  ( F : Y --> X  ->  Fun  F )
39 ssid 3210 . . . . . . . 8  |-  ( `' F " t ) 
C_  ( `' F " t )
40 funimass2 5342 . . . . . . . 8  |-  ( ( Fun  F  /\  ( `' F " t ) 
C_  ( `' F " t ) )  -> 
( F " ( `' F " t ) )  C_  t )
4138, 39, 40sylancl 643 . . . . . . 7  |-  ( F : Y --> X  -> 
( F " ( `' F " t ) )  C_  t )
4224, 41syl 15 . . . . . 6  |-  ( ph  ->  ( F " ( `' F " t ) )  C_  t )
4342adantr 451 . . . . 5  |-  ( (
ph  /\  t  e.  L )  ->  ( F " ( `' F " t ) )  C_  t )
44 imaeq2 5024 . . . . . . 7  |-  ( s  =  ( `' F " t )  ->  ( F " s )  =  ( F " ( `' F " t ) ) )
4544sseq1d 3218 . . . . . 6  |-  ( s  =  ( `' F " t )  ->  (
( F " s
)  C_  t  <->  ( F " ( `' F "
t ) )  C_  t ) )
4645rspcev 2897 . . . . 5  |-  ( ( ( `' F "
t )  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  /\  ( F " ( `' F " t ) )  C_  t )  ->  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t )
4737, 43, 46syl2anc 642 . . . 4  |-  ( (
ph  /\  t  e.  L )  ->  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t )
4847ex 423 . . 3  |-  ( ph  ->  ( t  e.  L  ->  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t ) )
494, 48jcad 519 . 2  |-  ( ph  ->  ( t  e.  L  ->  ( t  C_  X  /\  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t ) ) )
50 elfiun 7199 . . . . . . 7  |-  ( ( B  e.  ( fBas `  Y )  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e. 
_V )  ->  (
s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )  <->  ( s  e.  ( fi `  B
)  \/  s  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  \/  E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w ) ) ) )
515, 9, 50syl2anc 642 . . . . . 6  |-  ( ph  ->  ( s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  <->  ( s  e.  ( fi `  B
)  \/  s  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  \/  E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w ) ) ) )
52 fmfnfm.fm . . . . . . . 8  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
535, 1, 24, 52fmfnfmlem1 17665 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( fi `  B )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
545, 1, 24, 52fmfnfmlem3 17667 . . . . . . . . 9  |-  ( ph  ->  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =  ran  ( x  e.  L  |->  ( `' F " x ) ) )
5554eleq2d 2363 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  <->  s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )
56 vex 2804 . . . . . . . . . 10  |-  s  e. 
_V
5733elrnmpt 4942 . . . . . . . . . 10  |-  ( s  e.  _V  ->  (
s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) ) )
5856, 57ax-mp 8 . . . . . . . . 9  |-  ( s  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) )
595, 1, 24, 52fmfnfmlem2 17666 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  L  s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
6058, 59syl5bi 208 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
6155, 60sylbid 206 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  ->  (
( F " s
)  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
6254eleq2d 2363 . . . . . . . . . . . . 13  |-  ( ph  ->  ( w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  <->  w  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )
63 vex 2804 . . . . . . . . . . . . . 14  |-  w  e. 
_V
6433elrnmpt 4942 . . . . . . . . . . . . . 14  |-  ( w  e.  _V  ->  (
w  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  w  =  ( `' F " x ) ) )
6563, 64ax-mp 8 . . . . . . . . . . . . 13  |-  ( w  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  w  =  ( `' F " x ) )
6662, 65syl6bb 252 . . . . . . . . . . . 12  |-  ( ph  ->  ( w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  <->  E. x  e.  L  w  =  ( `' F " x ) ) )
6766adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  ( w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  <->  E. x  e.  L  w  =  ( `' F " x ) ) )
68 fbssfi 17548 . . . . . . . . . . . . 13  |-  ( ( B  e.  ( fBas `  Y )  /\  z  e.  ( fi `  B
) )  ->  E. s  e.  B  s  C_  z )
695, 68sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  E. s  e.  B  s  C_  z )
701ad3antrrr 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  L  e.  ( Fil `  X ) )
711adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  ->  L  e.  ( Fil `  X ) )
7252adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  s  e.  B )  ->  (
( X  FilMap  F ) `
 B )  C_  L )
73 filtop 17566 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( L  e.  ( Fil `  X
)  ->  X  e.  L )
741, 73syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  X  e.  L )
7574, 5, 243jca 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X ) )
7675adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  s  e.  B )  ->  ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X ) )
77 ssfg 17583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( B  e.  ( fBas `  Y
)  ->  B  C_  ( Y filGen B ) )
785, 77syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  B  C_  ( Y filGen B ) )
7978sselda 3193 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  s  e.  B )  ->  s  e.  ( Y filGen B ) )
80 eqid 2296 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Y
filGen B )  =  ( Y filGen B )
8180imaelfm 17662 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  s  e.  ( Y filGen B ) )  ->  ( F "
s )  e.  ( ( X  FilMap  F ) `
 B ) )
8276, 79, 81syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  s  e.  B )  ->  ( F " s )  e.  ( ( X  FilMap  F ) `  B ) )
8372, 82sseldd 3194 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  s  e.  B )  ->  ( F " s )  e.  L )
8483adantrr 697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
( F " s
)  e.  L )
8571, 84jca 518 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
( L  e.  ( Fil `  X )  /\  ( F "
s )  e.  L
) )
86 filin 17565 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( L  e.  ( Fil `  X )  /\  ( F " s )  e.  L  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
87863expa 1151 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( L  e.  ( Fil `  X )  /\  ( F "
s )  e.  L
)  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
8885, 87sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  ( ( F " s )  i^i  x )  e.  L
)
8988adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( ( F
" s )  i^i  x )  e.  L
)
90 simprr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  t  C_  X
)
91 elin 3371 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  ( ( F
" s )  i^i  x )  <->  ( w  e.  ( F " s
)  /\  w  e.  x ) )
9224, 38syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  Fun  F )
93 fvelima 5590 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Fun  F  /\  w  e.  ( F " s
) )  ->  E. y  e.  s  ( F `  y )  =  w )
9493ex 423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( Fun 
F  ->  ( w  e.  ( F " s
)  ->  E. y  e.  s  ( F `  y )  =  w ) )
9592, 94syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( w  e.  ( F " s )  ->  E. y  e.  s  ( F `  y
)  =  w ) )
9695ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
w  e.  ( F
" s )  ->  E. y  e.  s 
( F `  y
)  =  w ) )
9792ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  ->  Fun  F )
98 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  s  C_  z )
99 simprl 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) )  ->  y  e.  s )
100 ssel2 3188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( s  C_  z  /\  y  e.  s )  ->  y  e.  z )
10198, 99, 100syl2an 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
y  e.  z )
10292ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  Fun  F )
103 fbelss 17544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( B  e.  ( fBas `  Y )  /\  s  e.  B )  ->  s  C_  Y )
1045, 103sylan 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  s  e.  B )  ->  s  C_  Y )
10526adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  s  e.  B )  ->  dom  F  =  Y )
106104, 105sseqtr4d 3228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  s  e.  B )  ->  s  C_ 
dom  F )
107106adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
s  C_  dom  F )
108107sselda 3193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  y  e.  dom  F )
109 fvimacnv 5656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  x  <->  y  e.  ( `' F " x ) ) )
110102, 108, 109syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  ( ( F `  y )  e.  x  <->  y  e.  ( `' F " x ) ) )
111110biimpd 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  y  e.  s )  ->  ( ( F `  y )  e.  x  ->  y  e.  ( `' F "
x ) ) )
112111impr 602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  ( y  e.  s  /\  ( F `
 y )  e.  x ) )  -> 
y  e.  ( `' F " x ) )
113112ad2ant2rl 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
y  e.  ( `' F " x ) )
114 elin 3371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( z  i^i  ( `' F "
x ) )  <->  ( y  e.  z  /\  y  e.  ( `' F "
x ) ) )
115101, 113, 114sylanbrc 645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
y  e.  ( z  i^i  ( `' F " x ) ) )
116 inss2 3403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  i^i  ( `' F " x ) )  C_  ( `' F " x )
117 cnvimass 5049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( `' F " x ) 
C_  dom  F
118116, 117sstri 3201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( z  i^i  ( `' F " x ) )  C_  dom  F
119 funfvima2 5770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( Fun  F  /\  (
z  i^i  ( `' F " x ) ) 
C_  dom  F )  ->  ( y  e.  ( z  i^i  ( `' F " x ) )  ->  ( F `  y )  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
120118, 119mpan2 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( Fun 
F  ->  ( y  e.  ( z  i^i  ( `' F " x ) )  ->  ( F `  y )  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
12197, 115, 120sylc 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
t  C_  X  /\  ( y  e.  s  /\  ( F `  y )  e.  x
) ) )  -> 
( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) )
122121anassrs 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  /\  (
y  e.  s  /\  ( F `  y )  e.  x ) )  ->  ( F `  y )  e.  ( F " ( z  i^i  ( `' F " x ) ) ) )
123122expr 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  /\  y  e.  s )  ->  (
( F `  y
)  e.  x  -> 
( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) )
124 eleq1 2356 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F `  y )  =  w  ->  (
( F `  y
)  e.  x  <->  w  e.  x ) )
125 eleq1 2356 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F `  y )  =  w  ->  (
( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) )  <-> 
w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) )
126124, 125imbi12d 311 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  y )  =  w  ->  (
( ( F `  y )  e.  x  ->  ( F `  y
)  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) )  <->  ( w  e.  x  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) ) )
127123, 126syl5ibcom 211 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  /\  y  e.  s )  ->  (
( F `  y
)  =  w  -> 
( w  e.  x  ->  w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) ) )
128127rexlimdva 2680 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  ( E. y  e.  s 
( F `  y
)  =  w  -> 
( w  e.  x  ->  w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) ) )
12996, 128syld 40 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
w  e.  ( F
" s )  -> 
( w  e.  x  ->  w  e.  ( F
" ( z  i^i  ( `' F "
x ) ) ) ) ) )
130129imp3a 420 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
( w  e.  ( F " s )  /\  w  e.  x
)  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
13191, 130syl5bi 208 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  t  C_  X )  ->  (
w  e.  ( ( F " s )  i^i  x )  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
132131adantrl 696 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( w  e.  ( ( F "
s )  i^i  x
)  ->  w  e.  ( F " ( z  i^i  ( `' F " x ) ) ) ) )
133132ssrdv 3198 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( ( F
" s )  i^i  x )  C_  ( F " ( z  i^i  ( `' F "
x ) ) ) )
134 simprl 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( F "
( z  i^i  ( `' F " x ) ) )  C_  t
)
135133, 134sstrd 3202 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  ( ( F
" s )  i^i  x )  C_  t
)
136 filss 17564 . . . . . . . . . . . . . . . . . . 19  |-  ( ( L  e.  ( Fil `  X )  /\  (
( ( F "
s )  i^i  x
)  e.  L  /\  t  C_  X  /\  (
( F " s
)  i^i  x )  C_  t ) )  -> 
t  e.  L )
13770, 89, 90, 135, 136syl13anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  B  /\  s  C_  z ) )  /\  x  e.  L )  /\  (
( F " (
z  i^i  ( `' F " x ) ) )  C_  t  /\  t  C_  X ) )  ->  t  e.  L
)
138137exp32 588 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  ( ( F " ( z  i^i  ( `' F "
x ) ) ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) )
139 ineq2 3377 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  ( `' F " x )  ->  (
z  i^i  w )  =  ( z  i^i  ( `' F "
x ) ) )
140139imaeq2d 5028 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  ( `' F " x )  ->  ( F " ( z  i^i  w ) )  =  ( F " (
z  i^i  ( `' F " x ) ) ) )
141140sseq1d 3218 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( `' F " x )  ->  (
( F " (
z  i^i  w )
)  C_  t  <->  ( F " ( z  i^i  ( `' F " x ) ) )  C_  t
) )
142141imbi1d 308 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( `' F " x )  ->  (
( ( F "
( z  i^i  w
) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) )  <->  ( ( F
" ( z  i^i  ( `' F "
x ) ) ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) ) )
143138, 142syl5ibrcom 213 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  B  /\  s  C_  z ) )  /\  x  e.  L
)  ->  ( w  =  ( `' F " x )  ->  (
( F " (
z  i^i  w )
)  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
144143rexlimdva 2680 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  B  /\  s  C_  z ) )  -> 
( E. x  e.  L  w  =  ( `' F " x )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
145144expr 598 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  B )  ->  (
s  C_  z  ->  ( E. x  e.  L  w  =  ( `' F " x )  -> 
( ( F "
( z  i^i  w
) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) ) )
146145rexlimdva 2680 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. s  e.  B  s  C_  z  ->  ( E. x  e.  L  w  =  ( `' F " x )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) ) )
147146imp 418 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. s  e.  B  s  C_  z )  ->  ( E. x  e.  L  w  =  ( `' F " x )  -> 
( ( F "
( z  i^i  w
) )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
14869, 147syldan 456 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  ( E. x  e.  L  w  =  ( `' F " x )  ->  (
( F " (
z  i^i  w )
)  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
14967, 148sylbid 206 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( fi `  B ) )  ->  ( w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
150149impr 602 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( fi `  B
)  /\  w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) )
151 imaeq2 5024 . . . . . . . . . . 11  |-  ( s  =  ( z  i^i  w )  ->  ( F " s )  =  ( F " (
z  i^i  w )
) )
152151sseq1d 3218 . . . . . . . . . 10  |-  ( s  =  ( z  i^i  w )  ->  (
( F " s
)  C_  t  <->  ( F " ( z  i^i  w
) )  C_  t
) )
153152imbi1d 308 . . . . . . . . 9  |-  ( s  =  ( z  i^i  w )  ->  (
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) )  <->  ( ( F
" ( z  i^i  w ) )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
154150, 153syl5ibrcom 213 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( fi `  B
)  /\  w  e.  ( fi `  ran  (
x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( s  =  ( z  i^i  w
)  ->  ( ( F " s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
155154rexlimdvva 2687 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
15653, 61, 1553jaod 1246 . . . . . 6  |-  ( ph  ->  ( ( s  e.  ( fi `  B
)  \/  s  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  \/  E. z  e.  ( fi `  B
) E. w  e.  ( fi `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) s  =  ( z  i^i  w ) )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
15751, 156sylbid 206 . . . . 5  |-  ( ph  ->  ( s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  t  e.  L ) ) ) )
158157rexlimdv 2679 . . . 4  |-  ( ph  ->  ( E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) )
159158com23 72 . . 3  |-  ( ph  ->  ( t  C_  X  ->  ( E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t  ->  t  e.  L ) ) )
160159imp3a 420 . 2  |-  ( ph  ->  ( ( t  C_  X  /\  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t )  -> 
t  e.  L ) )
16149, 160impbid 183 1  |-  ( ph  ->  ( t  e.  L  <->  ( t  C_  X  /\  E. s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ( F "
s )  C_  t
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165    e. cmpt 4093   `'ccnv 4704   dom cdm 4705   ran crn 4706   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874   ficfi 7180   fBascfbas 17534   filGencfg 17535   Filcfil 17556    FilMap cfm 17644
This theorem is referenced by:  fmfnfm  17669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-fin 6883  df-fi 7181  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649
  Copyright terms: Public domain W3C validator