MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmid Structured version   Unicode version

Theorem fmid 17984
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
fmid  |-  ( F  e.  ( Fil `  X
)  ->  ( ( X  FilMap  (  _I  |`  X ) ) `  F )  =  F )

Proof of Theorem fmid
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 17872 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2 f1oi 5705 . . . . 5  |-  (  _I  |`  X ) : X -1-1-onto-> X
3 f1ofo 5673 . . . . 5  |-  ( (  _I  |`  X ) : X -1-1-onto-> X  ->  (  _I  |`  X ) : X -onto-> X )
42, 3ax-mp 8 . . . 4  |-  (  _I  |`  X ) : X -onto-> X
5 eqid 2435 . . . . 5  |-  ( X
filGen F )  =  ( X filGen F )
65elfm3 17974 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  (  _I  |`  X ) : X -onto-> X )  ->  (
t  e.  ( ( X  FilMap  (  _I  |`  X ) ) `  F )  <->  E. s  e.  ( X filGen F ) t  =  ( (  _I  |`  X ) " s
) ) )
71, 4, 6sylancl 644 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  ( t  e.  ( ( X  FilMap  (  _I  |`  X )
) `  F )  <->  E. s  e.  ( X
filGen F ) t  =  ( (  _I  |`  X )
" s ) ) )
8 fgfil 17899 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( X filGen F )  =  F )
98rexeqdv 2903 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  ( E. s  e.  ( X filGen F ) t  =  ( (  _I  |`  X )
" s )  <->  E. s  e.  F  t  =  ( (  _I  |`  X )
" s ) ) )
10 filelss 17876 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  s  C_  X )
11 resiima 5212 . . . . . . . 8  |-  ( s 
C_  X  ->  (
(  _I  |`  X )
" s )  =  s )
1210, 11syl 16 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  (
(  _I  |`  X )
" s )  =  s )
1312eqeq2d 2446 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  (
t  =  ( (  _I  |`  X ) " s )  <->  t  =  s ) )
14 equcom 1692 . . . . . 6  |-  ( s  =  t  <->  t  =  s )
1513, 14syl6bbr 255 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  (
t  =  ( (  _I  |`  X ) " s )  <->  s  =  t ) )
1615rexbidva 2714 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( E. s  e.  F  t  =  ( (  _I  |`  X ) " s
)  <->  E. s  e.  F  s  =  t )
)
17 risset 2745 . . . 4  |-  ( t  e.  F  <->  E. s  e.  F  s  =  t )
1816, 17syl6bbr 255 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  ( E. s  e.  F  t  =  ( (  _I  |`  X ) " s
)  <->  t  e.  F
) )
197, 9, 183bitrd 271 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( t  e.  ( ( X  FilMap  (  _I  |`  X )
) `  F )  <->  t  e.  F ) )
2019eqrdv 2433 1  |-  ( F  e.  ( Fil `  X
)  ->  ( ( X  FilMap  (  _I  |`  X ) ) `  F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312    _I cid 4485    |` cres 4872   "cima 4873   -onto->wfo 5444   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   fBascfbas 16681   filGencfg 16682   Filcfil 17869    FilMap cfm 17957
This theorem is referenced by:  ufldom  17986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-fbas 16691  df-fg 16692  df-fil 17870  df-fm 17962
  Copyright terms: Public domain W3C validator