MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt2co Unicode version

Theorem fmpt2co 6330
Description: Composition of two functions. Variation of fmptco 5802 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpt2co.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
fmpt2co.2  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
fmpt2co.3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
fmpt2co.4  |-  ( z  =  R  ->  S  =  T )
Assertion
Ref Expression
fmpt2co  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Distinct variable groups:    x, y, B    x, z, C, y    ph, x, y    x, S, y    x, A, y   
z, R    z, T
Allowed substitution hints:    ph( z)    A( z)    B( z)    R( x, y)    S( z)    T( x, y)    F( x, y, z)    G( x, y, z)

Proof of Theorem fmpt2co
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpt2co.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
21ralrimivva 2720 . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  R  e.  C )
3 eqid 2366 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( x  e.  A ,  y  e.  B  |->  R )
43fmpt2 6318 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  R  e.  C  <->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B
) --> C )
52, 4sylib 188 . . . 4  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B ) --> C )
6 nfcv 2502 . . . . . . 7  |-  F/_ u R
7 nfcv 2502 . . . . . . 7  |-  F/_ v R
8 nfcv 2502 . . . . . . . 8  |-  F/_ x
v
9 nfcsb1v 3199 . . . . . . . 8  |-  F/_ x [_ u  /  x ]_ R
108, 9nfcsb 3201 . . . . . . 7  |-  F/_ x [_ v  /  y ]_ [_ u  /  x ]_ R
11 nfcsb1v 3199 . . . . . . 7  |-  F/_ y [_ v  /  y ]_ [_ u  /  x ]_ R
12 csbeq1a 3175 . . . . . . . 8  |-  ( x  =  u  ->  R  =  [_ u  /  x ]_ R )
13 csbeq1a 3175 . . . . . . . 8  |-  ( y  =  v  ->  [_ u  /  x ]_ R  = 
[_ v  /  y ]_ [_ u  /  x ]_ R )
1412, 13sylan9eq 2418 . . . . . . 7  |-  ( ( x  =  u  /\  y  =  v )  ->  R  =  [_ v  /  y ]_ [_ u  /  x ]_ R )
156, 7, 10, 11, 14cbvmpt2 6051 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( u  e.  A ,  v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
16 vex 2876 . . . . . . . . . 10  |-  u  e. 
_V
17 vex 2876 . . . . . . . . . 10  |-  v  e. 
_V
1816, 17op2ndd 6258 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  ( 2nd `  w
)  =  v )
1918csbeq1d 3173 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )
2016, 17op1std 6257 . . . . . . . . . 10  |-  ( w  =  <. u ,  v
>.  ->  ( 1st `  w
)  =  u )
2120csbeq1d 3173 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 1st `  w
)  /  x ]_ R  =  [_ u  /  x ]_ R )
2221csbeq2dv 3192 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ v  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2319, 22eqtrd 2398 . . . . . . 7  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2423mpt2mpt 6065 . . . . . 6  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )  =  ( u  e.  A , 
v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
2515, 24eqtr4i 2389 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R )
2625fmpt 5792 . . . 4  |-  ( A. w  e.  ( A  X.  B ) [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  e.  C  <->  ( x  e.  A , 
y  e.  B  |->  R ) : ( A  X.  B ) --> C )
275, 26sylibr 203 . . 3  |-  ( ph  ->  A. w  e.  ( A  X.  B )
[_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  e.  C )
28 fmpt2co.2 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
2928, 25syl6eq 2414 . . 3  |-  ( ph  ->  F  =  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R ) )
30 fmpt2co.3 . . 3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
3127, 29, 30fmptcos 5804 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S ) )
3223csbeq1d 3173 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S  =  [_ [_ v  / 
y ]_ [_ u  /  x ]_ R  /  z ]_ S )
3332mpt2mpt 6065 . . . 4  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( u  e.  A , 
v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
)
34 nfcv 2502 . . . . 5  |-  F/_ u [_ R  /  z ]_ S
35 nfcv 2502 . . . . 5  |-  F/_ v [_ R  /  z ]_ S
36 nfcv 2502 . . . . . 6  |-  F/_ x S
3710, 36nfcsb 3201 . . . . 5  |-  F/_ x [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
38 nfcv 2502 . . . . . 6  |-  F/_ y S
3911, 38nfcsb 3201 . . . . 5  |-  F/_ y [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
4014csbeq1d 3173 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  [_ R  /  z ]_ S  =  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4134, 35, 37, 39, 40cbvmpt2 6051 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  [_ R  /  z ]_ S
)  =  ( u  e.  A ,  v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4233, 41eqtr4i 2389 . . 3  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  [_ R  /  z ]_ S
)
4313impb 1148 . . . . 5  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  R  e.  C )
44 nfcvd 2503 . . . . . 6  |-  ( R  e.  C  ->  F/_ z T )
45 fmpt2co.4 . . . . . 6  |-  ( z  =  R  ->  S  =  T )
4644, 45csbiegf 3207 . . . . 5  |-  ( R  e.  C  ->  [_ R  /  z ]_ S  =  T )
4743, 46syl 15 . . . 4  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  [_ R  / 
z ]_ S  =  T )
4847mpt2eq3dva 6038 . . 3  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |-> 
[_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  T ) )
4942, 48syl5eq 2410 . 2  |-  ( ph  ->  ( w  e.  ( A  X.  B ) 
|->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
5031, 49eqtrd 2398 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   [_csb 3167   <.cop 3732    e. cmpt 4179    X. cxp 4790    o. ccom 4796   -->wf 5354   ` cfv 5358    e. cmpt2 5983   1stc1st 6247   2ndc2nd 6248
This theorem is referenced by:  oprabco  6331  evlslem2  16459  txswaphmeolem  17712  xpstopnlem1  17717  stdbdxmet  18274  cnre2csqima  23664  cvmlift2lem7  24443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-fv 5366  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250
  Copyright terms: Public domain W3C validator