MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt2d Unicode version

Theorem fmpt2d 5688
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmpt2d.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
fmpt2d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fmpt2d.3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )
Assertion
Ref Expression
fmpt2d  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    y, A    y, C    y, F    ph, x    ph, y
Allowed substitution hints:    B( x, y)    C( x)    F( x)    V( x, y)

Proof of Theorem fmpt2d
StepHypRef Expression
1 fmpt2d.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2626 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 eqid 2283 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5370 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 15 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 fmpt2d.1 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5335 . . 3  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 223 . 2  |-  ( ph  ->  F  Fn  A )
9 fmpt2d.3 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )
109ralrimiva 2626 . 2  |-  ( ph  ->  A. y  e.  A  ( F `  y )  e.  C )
11 ffnfv 5685 . 2  |-  ( F : A --> C  <->  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  e.  C
) )
128, 10, 11sylanbrc 645 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    e. cmpt 4077    Fn wfn 5250   -->wf 5251   ` cfv 5255
This theorem is referenced by:  fmpt2dOLD  5689  cantnff  7375  limsupgre  11955  idaf  13895  curfcl  14006  yonedainv  14055  clsf  16785  kgenf  17236  vmaf  20357  lgsdchr  20587  indf  23599  dstrvprob  23672  dstfrvclim1  23678  erdszelem6  23727  cdleme50f  30731  dochfN  31546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
  Copyright terms: Public domain W3C validator