MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptco Unicode version

Theorem fmptco 5892
Description: Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation  ( x  +  2 ) and  G the equation  ( 3 * z ) then  ( G  o.  F ) has the equation  ( 3
* ( x  + 
2 ) ). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
fmptco.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptco.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptco.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptco  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, A    x, y, B    y, R    ph, x    x, S    y, T
Allowed substitution hints:    ph( y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptco
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5359 . 2  |-  Rel  ( G  o.  F )
2 funmpt 5480 . . 3  |-  Fun  (
x  e.  A  |->  T )
3 funrel 5462 . . 3  |-  ( Fun  ( x  e.  A  |->  T )  ->  Rel  ( x  e.  A  |->  T ) )
42, 3ax-mp 8 . 2  |-  Rel  (
x  e.  A  |->  T )
5 fmptco.1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
6 eqid 2435 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
75, 6fmptd 5884 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> B )
8 fmptco.2 . . . . . . . . . . . . 13  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
98feq1d 5571 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> B 
<->  ( x  e.  A  |->  R ) : A --> B ) )
107, 9mpbird 224 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
11 ffun 5584 . . . . . . . . . . 11  |-  ( F : A --> B  ->  Fun  F )
1210, 11syl 16 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
13 funbrfv 5756 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z F u  ->  ( F `
 z )  =  u ) )
1413imp 419 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z F u )  -> 
( F `  z
)  =  u )
1512, 14sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  z F u )  ->  ( F `  z )  =  u )
1615eqcomd 2440 . . . . . . . 8  |-  ( (
ph  /\  z F u )  ->  u  =  ( F `  z ) )
1716a1d 23 . . . . . . 7  |-  ( (
ph  /\  z F u )  ->  (
u G w  ->  u  =  ( F `  z ) ) )
1817expimpd 587 . . . . . 6  |-  ( ph  ->  ( ( z F u  /\  u G w )  ->  u  =  ( F `  z ) ) )
1918pm4.71rd 617 . . . . 5  |-  ( ph  ->  ( ( z F u  /\  u G w )  <->  ( u  =  ( F `  z )  /\  (
z F u  /\  u G w ) ) ) )
2019exbidv 1636 . . . 4  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  E. u
( u  =  ( F `  z )  /\  ( z F u  /\  u G w ) ) ) )
21 fvex 5733 . . . . . 6  |-  ( F `
 z )  e. 
_V
22 breq2 4208 . . . . . . 7  |-  ( u  =  ( F `  z )  ->  (
z F u  <->  z F
( F `  z
) ) )
23 breq1 4207 . . . . . . 7  |-  ( u  =  ( F `  z )  ->  (
u G w  <->  ( F `  z ) G w ) )
2422, 23anbi12d 692 . . . . . 6  |-  ( u  =  ( F `  z )  ->  (
( z F u  /\  u G w )  <->  ( z F ( F `  z
)  /\  ( F `  z ) G w ) ) )
2521, 24ceqsexv 2983 . . . . 5  |-  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  <-> 
( z F ( F `  z )  /\  ( F `  z ) G w ) )
26 funfvbrb 5834 . . . . . . . . 9  |-  ( Fun 
F  ->  ( z  e.  dom  F  <->  z F
( F `  z
) ) )
2712, 26syl 16 . . . . . . . 8  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z F ( F `
 z ) ) )
28 fdm 5586 . . . . . . . . . 10  |-  ( F : A --> B  ->  dom  F  =  A )
2910, 28syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
3029eleq2d 2502 . . . . . . . 8  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z  e.  A ) )
3127, 30bitr3d 247 . . . . . . 7  |-  ( ph  ->  ( z F ( F `  z )  <-> 
z  e.  A ) )
328fveq1d 5721 . . . . . . . 8  |-  ( ph  ->  ( F `  z
)  =  ( ( x  e.  A  |->  R ) `  z ) )
33 fmptco.3 . . . . . . . 8  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
34 eqidd 2436 . . . . . . . 8  |-  ( ph  ->  w  =  w )
3532, 33, 34breq123d 4218 . . . . . . 7  |-  ( ph  ->  ( ( F `  z ) G w  <-> 
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) )
3631, 35anbi12d 692 . . . . . 6  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) ) )
37 nfcv 2571 . . . . . . . . 9  |-  F/_ x
z
38 nfv 1629 . . . . . . . . . 10  |-  F/ x ph
39 nffvmpt1 5727 . . . . . . . . . . . 12  |-  F/_ x
( ( x  e.  A  |->  R ) `  z )
40 nfcv 2571 . . . . . . . . . . . 12  |-  F/_ x
( y  e.  B  |->  S )
41 nfcv 2571 . . . . . . . . . . . 12  |-  F/_ x w
4239, 40, 41nfbr 4248 . . . . . . . . . . 11  |-  F/ x
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w
43 nfcsb1v 3275 . . . . . . . . . . . 12  |-  F/_ x [_ z  /  x ]_ T
4443nfeq2 2582 . . . . . . . . . . 11  |-  F/ x  w  =  [_ z  /  x ]_ T
4542, 44nfbi 1856 . . . . . . . . . 10  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T )
4638, 45nfim 1832 . . . . . . . . 9  |-  F/ x
( ph  ->  ( ( ( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) )
47 fveq2 5719 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( x  e.  A  |->  R ) `  x
)  =  ( ( x  e.  A  |->  R ) `  z ) )
4847breq1d 4214 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w ) )
49 csbeq1a 3251 . . . . . . . . . . . 12  |-  ( x  =  z  ->  T  =  [_ z  /  x ]_ T )
5049eqeq2d 2446 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
w  =  T  <->  w  =  [_ z  /  x ]_ T ) )
5148, 50bibi12d 313 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( y  e.  B  |->  S ) w  <->  w  =  T )  <->  ( (
( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) ) )
5251imbi2d 308 . . . . . . . . 9  |-  ( x  =  z  ->  (
( ph  ->  ( ( ( x  e.  A  |->  R ) `  x
) ( y  e.  B  |->  S ) w  <-> 
w  =  T ) )  <->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) ) )
53 vex 2951 . . . . . . . . . . . 12  |-  w  e. 
_V
54 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  y  =  R )
5554eleq1d 2501 . . . . . . . . . . . . . 14  |-  ( ( y  =  R  /\  u  =  w )  ->  ( y  e.  B  <->  R  e.  B ) )
56 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  u  =  w )
57 fmptco.4 . . . . . . . . . . . . . . . 16  |-  ( y  =  R  ->  S  =  T )
5857adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  S  =  T )
5956, 58eqeq12d 2449 . . . . . . . . . . . . . 14  |-  ( ( y  =  R  /\  u  =  w )  ->  ( u  =  S  <-> 
w  =  T ) )
6055, 59anbi12d 692 . . . . . . . . . . . . 13  |-  ( ( y  =  R  /\  u  =  w )  ->  ( ( y  e.  B  /\  u  =  S )  <->  ( R  e.  B  /\  w  =  T ) ) )
61 df-mpt 4260 . . . . . . . . . . . . 13  |-  ( y  e.  B  |->  S )  =  { <. y ,  u >.  |  (
y  e.  B  /\  u  =  S ) }
6260, 61brabga 4461 . . . . . . . . . . . 12  |-  ( ( R  e.  B  /\  w  e.  _V )  ->  ( R ( y  e.  B  |->  S ) w  <->  ( R  e.  B  /\  w  =  T ) ) )
635, 53, 62sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( y  e.  B  |->  S ) w  <-> 
( R  e.  B  /\  w  =  T
) ) )
64 simpr 448 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
656fvmpt2 5803 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  R  e.  B )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
6664, 5, 65syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
6766breq1d 4214 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  R ( y  e.  B  |->  S ) w ) )
685biantrurd 495 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
w  =  T  <->  ( R  e.  B  /\  w  =  T ) ) )
6963, 67, 683bitr4d 277 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T
) )
7069expcom 425 . . . . . . . . 9  |-  ( x  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T ) ) )
7137, 46, 52, 70vtoclgaf 3008 . . . . . . . 8  |-  ( z  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) )
7271impcom 420 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) )
7372pm5.32da 623 . . . . . 6  |-  ( ph  ->  ( ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
7436, 73bitrd 245 . . . . 5  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  w  = 
[_ z  /  x ]_ T ) ) )
7525, 74syl5bb 249 . . . 4  |-  ( ph  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
7620, 75bitrd 245 . . 3  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
77 vex 2951 . . . 4  |-  z  e. 
_V
7877, 53opelco 5035 . . 3  |-  ( <.
z ,  w >.  e.  ( G  o.  F
)  <->  E. u ( z F u  /\  u G w ) )
79 df-mpt 4260 . . . . 5  |-  ( x  e.  A  |->  T )  =  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) }
8079eleq2i 2499 . . . 4  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  <. z ,  w >.  e.  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) } )
81 nfv 1629 . . . . . 6  |-  F/ x  z  e.  A
8243nfeq2 2582 . . . . . 6  |-  F/ x  v  =  [_ z  /  x ]_ T
8381, 82nfan 1846 . . . . 5  |-  F/ x
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )
84 nfv 1629 . . . . 5  |-  F/ v ( z  e.  A  /\  w  =  [_ z  /  x ]_ T )
85 eleq1 2495 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
8649eqeq2d 2446 . . . . . 6  |-  ( x  =  z  ->  (
v  =  T  <->  v  =  [_ z  /  x ]_ T ) )
8785, 86anbi12d 692 . . . . 5  |-  ( x  =  z  ->  (
( x  e.  A  /\  v  =  T
)  <->  ( z  e.  A  /\  v  = 
[_ z  /  x ]_ T ) ) )
88 eqeq1 2441 . . . . . 6  |-  ( v  =  w  ->  (
v  =  [_ z  /  x ]_ T  <->  w  =  [_ z  /  x ]_ T ) )
8988anbi2d 685 . . . . 5  |-  ( v  =  w  ->  (
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
9083, 84, 77, 53, 87, 89opelopabf 4471 . . . 4  |-  ( <.
z ,  w >.  e. 
{ <. x ,  v
>.  |  ( x  e.  A  /\  v  =  T ) }  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
9180, 90bitri 241 . . 3  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
9276, 78, 913bitr4g 280 . 2  |-  ( ph  ->  ( <. z ,  w >.  e.  ( G  o.  F )  <->  <. z ,  w >.  e.  (
x  e.  A  |->  T ) ) )
931, 4, 92eqrelrdv 4963 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2948   [_csb 3243   <.cop 3809   class class class wbr 4204   {copab 4257    e. cmpt 4258   dom cdm 4869    o. ccom 4873   Rel wrel 4874   Fun wfun 5439   -->wf 5441   ` cfv 5445
This theorem is referenced by:  fmptcof  5893  fcompt  5895  fcoconst  5896  ofco  6315  ccatco  11792  lo1o12  12315  rlimcn1  12370  rlimcn1b  12371  rlimdiv  12427  ackbijnn  12595  setcepi  14231  prf1st  14289  prf2nd  14290  hofcllem  14343  prdsidlem  14715  pws0g  14719  pwsco1mhm  14757  pwsco2mhm  14758  pwsinvg  14918  pwssub  14919  galactghm  15094  efginvrel1  15348  frgpup3lem  15397  gsumzf1o  15507  gsumconst  15520  gsumzmhm  15521  gsummhm2  15523  gsumsub  15530  gsum2d  15534  dprdfsub  15567  lmhmvsca  16109  psrass1lem  16430  psrlinv  16449  psrcom  16460  evlslem2  16556  coe1fval3  16594  psropprmul  16620  coe1z  16644  coe1mul2  16650  coe1tm  16653  ply1coe  16672  frgpcyg  16842  ptrescn  17659  lmcn2  17669  qtopeu  17736  flfcnp2  18027  tgpconcomp  18130  tsmsmhm  18163  tsmssub  18166  tsmsxplem1  18170  negfcncf  18937  pcopt  19035  pcopt2  19036  pi1xfrcnvlem  19069  ovolctb  19374  ovolfs2  19451  uniioombllem2  19463  uniioombllem3  19465  ismbf  19510  mbfconst  19515  ismbfcn2  19519  itg1climres  19594  iblabslem  19707  iblabs  19708  bddmulibl  19718  limccnp  19766  limccnp2  19767  limcco  19768  dvcof  19822  dvcjbr  19823  dvcj  19824  dvfre  19825  dvmptcj  19842  dvmptco  19846  dvcnvlem  19848  dvef  19852  dvlip  19865  dvlipcn  19866  itgsubstlem  19920  plypf1  20119  plyco  20148  dgrcolem1  20179  dgrcolem2  20180  dgrco  20181  plycjlem  20182  taylply2  20272  logcn  20526  leibpi  20770  efrlim  20796  jensenlem2  20814  amgmlem  20816  ftalem7  20849  lgseisenlem4  21124  dchrisum0  21202  cofmpt  24066  ofcfval4  24476  dstfrvclim1  24723  lgamgulmlem2  24802  lgamcvg2  24827  cvmliftlem6  24965  cvmliftphtlem  24992  cvmlift3lem5  24998  circum  25099  mblfinlem  26190  volsupnfl  26197  itgaddnc  26211  itgmulc2nc  26219  fnopabco  26361  upixp  26368  mhmvlin  27367  mendassa  27417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-fv 5453
  Copyright terms: Public domain W3C validator