MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmss Unicode version

Theorem fmss 17641
Description: A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmss  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( ( X 
FilMap  F ) `  B
)  C_  ( ( X  FilMap  F ) `  C ) )

Proof of Theorem fmss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl2 959 . . . 4  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  B  e.  (
fBas `  Y )
)
2 simprl 732 . . . 4  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  F : Y --> X )
3 simpl1 958 . . . 4  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  X  e.  A
)
4 eqid 2283 . . . . 5  |-  ran  (
y  e.  B  |->  ( F " y ) )  =  ran  (
y  e.  B  |->  ( F " y ) )
54fbasrn 17579 . . . 4  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y --> X  /\  X  e.  A )  ->  ran  ( y  e.  B  |->  ( F " y
) )  e.  (
fBas `  X )
)
61, 2, 3, 5syl3anc 1182 . . 3  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ran  ( y  e.  B  |->  ( F
" y ) )  e.  ( fBas `  X
) )
7 simpl3 960 . . . 4  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  C  e.  (
fBas `  Y )
)
8 eqid 2283 . . . . 5  |-  ran  (
y  e.  C  |->  ( F " y ) )  =  ran  (
y  e.  C  |->  ( F " y ) )
98fbasrn 17579 . . . 4  |-  ( ( C  e.  ( fBas `  Y )  /\  F : Y --> X  /\  X  e.  A )  ->  ran  ( y  e.  C  |->  ( F " y
) )  e.  (
fBas `  X )
)
107, 2, 3, 9syl3anc 1182 . . 3  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ran  ( y  e.  C  |->  ( F
" y ) )  e.  ( fBas `  X
) )
11 resmpt 5000 . . . . . 6  |-  ( B 
C_  C  ->  (
( y  e.  C  |->  ( F " y
) )  |`  B )  =  ( y  e.  B  |->  ( F "
y ) ) )
1211ad2antll 709 . . . . 5  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( ( y  e.  C  |->  ( F
" y ) )  |`  B )  =  ( y  e.  B  |->  ( F " y ) ) )
13 resss 4979 . . . . . 6  |-  ( ( y  e.  C  |->  ( F " y ) )  |`  B )  C_  ( y  e.  C  |->  ( F " y
) )
1413a1i 10 . . . . 5  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( ( y  e.  C  |->  ( F
" y ) )  |`  B )  C_  (
y  e.  C  |->  ( F " y ) ) )
1512, 14eqsstr3d 3213 . . . 4  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( y  e.  B  |->  ( F "
y ) )  C_  ( y  e.  C  |->  ( F " y
) ) )
16 rnss 4907 . . . 4  |-  ( ( y  e.  B  |->  ( F " y ) )  C_  ( y  e.  C  |->  ( F
" y ) )  ->  ran  ( y  e.  B  |->  ( F
" y ) ) 
C_  ran  ( y  e.  C  |->  ( F
" y ) ) )
1715, 16syl 15 . . 3  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ran  ( y  e.  B  |->  ( F
" y ) ) 
C_  ran  ( y  e.  C  |->  ( F
" y ) ) )
18 fgss 17568 . . 3  |-  ( ( ran  ( y  e.  B  |->  ( F "
y ) )  e.  ( fBas `  X
)  /\  ran  ( y  e.  C  |->  ( F
" y ) )  e.  ( fBas `  X
)  /\  ran  ( y  e.  B  |->  ( F
" y ) ) 
C_  ran  ( y  e.  C  |->  ( F
" y ) ) )  ->  ( X filGen ran  ( y  e.  B  |->  ( F "
y ) ) ) 
C_  ( X filGen ran  ( y  e.  C  |->  ( F " y
) ) ) )
196, 10, 17, 18syl3anc 1182 . 2  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( X filGen ran  ( y  e.  B  |->  ( F " y
) ) )  C_  ( X filGen ran  ( y  e.  C  |->  ( F
" y ) ) ) )
20 fmval 17638 . . 3  |-  ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  B )  =  ( X filGen ran  ( y  e.  B  |->  ( F " y
) ) ) )
213, 1, 2, 20syl3anc 1182 . 2  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( ( X 
FilMap  F ) `  B
)  =  ( X
filGen ran  ( y  e.  B  |->  ( F "
y ) ) ) )
22 fmval 17638 . . 3  |-  ( ( X  e.  A  /\  C  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  C )  =  ( X filGen ran  ( y  e.  C  |->  ( F " y
) ) ) )
233, 7, 2, 22syl3anc 1182 . 2  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( ( X 
FilMap  F ) `  C
)  =  ( X
filGen ran  ( y  e.  C  |->  ( F "
y ) ) ) )
2419, 21, 233sstr4d 3221 1  |-  ( ( ( X  e.  A  /\  B  e.  ( fBas `  Y )  /\  C  e.  ( fBas `  Y ) )  /\  ( F : Y --> X  /\  B  C_  C ) )  ->  ( ( X 
FilMap  F ) `  B
)  C_  ( ( X  FilMap  F ) `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152    e. cmpt 4077   ran crn 4690    |` cres 4691   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   fBascfbas 17518   filGencfg 17519    FilMap cfm 17628
This theorem is referenced by:  ufldom  17657  cnpfcfi  17735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-fbas 17520  df-fg 17521  df-fm 17633
  Copyright terms: Public domain W3C validator